Inactivation of Bacillus amyloliquefaciens Spores by a Combination of Sucrose Laurate and Pressure-Assisted Thermal Processing

2010 ◽  
Vol 73 (11) ◽  
pp. 2043-2052 ◽  
Author(s):  
S. de LAMO-CASTELLVÍ ◽  
W. RATPHITAGSANTI ◽  
V. M. BALASUBRAMANIAM ◽  
A. E. YOUSEF

The aim of this research was to study the effect of sucrose laurate ester (SL) on enhancing pressure-assisted thermal processing (PATP) inactivation of Bacillus amyloliquefaciens Fad 82 spores. B. amyloliquefaciens spores (~108 CFU/ml) were suspended in deionized water, solutions of 0.1, 0.5, and 1.0% SL, and mashed carrots without or with 1% SL. Samples were treated at 700 MPa and 105°C for 0 (come-up time), 1, 2, and 5 min and analyzed by pour-plating and most-probable-number techniques. Heat shock (80°C, 10 min) was applied to untreated and treated samples to study the germination rates. Results were also compared against samples treated by high pressure processing (700 MPa, 35°C) and thermal processing (105°C, 0.1 MPa). Among the combinations tested, SL at concentrations of 1.0% showed the best synergistic effect against spores of B. amyloliquefaciens when combined with PATP treatments. In the case of high pressure and thermal processing treatments, SL did not enhance spore inactivation at the conditions tested. These results suggest that SL is a promising antimicrobial compound that can help reduce the severity of PATP treatments.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1256
Author(s):  
Hansol Kim ◽  
Ah Hyun Jung ◽  
Sung Hee Park ◽  
Yohan Yoon ◽  
Beob Gyun Kim

The objectives of the present study were to determine the influence of thermal and non-thermal processing procedures on in vitro ileal disappearance (IVID) of dry matter (DM) and crude protein (CP) in chicken meat as dog foods using 2-step in vitro assays. In thermal processing experiments, IVID of DM and CP in chicken meat thermally processed at 70, 90, and 121 °C, respectively, with increasing processing time was determined. For non-thermal processing experiments, IVID of DM and CP in chicken meat processed by high-pressure, ultraviolet-light emitting diode (UV-LED), electron-beam, and gamma-ray was determined. Thermal processing of chicken meat at 70, 90, and 121 °C resulted in decreased IVID of CP (p < 0.05) as heating time increased. In non-thermal processing experiment, IVID of CP in chicken meat was not affected by high-pressure processing or UV-LED radiation. In vitro ileal disappearance of CP in electron-beam- or gamma-ray-irradiated chicken meat was not affected by the irradiation intensity. Taken together, ileal protein digestibility of chicken meat for dogs is decreased by thermal processing, but is minimally affected by non-thermal processing methods.


LWT ◽  
2017 ◽  
Vol 75 ◽  
pp. 85-92 ◽  
Author(s):  
Junjie Yi ◽  
Biniam T. Kebede ◽  
Doan Ngoc Hai Dang ◽  
Carolien Buvé ◽  
Tara Grauwet ◽  
...  

Food Control ◽  
2021 ◽  
pp. 108791
Author(s):  
M.E. Alañón ◽  
M.L. Cádiz-Gurrea ◽  
R. Oliver-Simancas ◽  
F.J. Leyva-Jiménez ◽  
D. Arráez-Román ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Netsanet Shiferaw Terefe ◽  
Gabriele A. Netzel ◽  
Michael E. Netzel

This study investigated the impact of copigmentation with sinapic acid on the stability of anthocyanins in strawberry purees of three commercial cultivars (Camarosa, Rubygem, and Festival) after high-pressure processing (HPP; 600 MPa/5 min) and thermal processing (TP; 88°C/2 min) and during three months of refrigerated storage. Copigmentation did not have a significant effect on the stability of anthocyanins during processing with 14% to 30% degradation observed with no significant difference among cultivars or the processing technique. On the contrary, copigmentation significantly (p<0.05) improved the stability of anthocyanins in HPP samples during storage, most probably via the formation of intramolecular complexes which improve the resistance of anthocyanins to degradation. The anthocyanin contents of the copigmented HPP Camarosa, Rubygem, and Festival samples were, respectively, 42%, 40%, and 33% higher than their noncopigmented counterparts at the end of the three-month storage. Copigmentation also improved the retention of the total antioxidant capacity of the HPP-processed strawberry samples. The TPC of the copigmented HPP Camarosa, Rubygem, and Festival samples was, respectively, 66%, 65%, and 85% higher than that of the non-copigmented samples after three months of storage, whereas the respective ORAC values were 36.5%, 59.3%, and 35.3% higher. In contrast, copigmentation did not improve the stability of anthocyanins in TP samples, although significant (p<0.05) improvement in antioxidant capacity was also observed in TP samples due to the antioxidant nature of the copigment.


2014 ◽  
Vol 77 (12) ◽  
pp. 2054-2061 ◽  
Author(s):  
GUY E. SKINNER ◽  
KRISTIN M. MARSHALL ◽  
TRAVIS R. MORRISSEY ◽  
VIVIANA LOEZA ◽  
EDUARDO PATAZCA ◽  
...  

The aim of this study was to determine the resistance of multiple strains of the three nonproteolytic types of Clostridium botulinum (seven strains of type E, eight of type B, and two of type F) spores exposed to combined high pressure and thermal processing. The resistance of spores suspended in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer (0.05 M, pH 7) was determined at a process temperature of 80°C with high pressures of 600, 650, and 700 MPa using a laboratory-scale pressure test system. Spores of C. botulinum serotype E strains demonstrated less resistance than nonproteolytic spores of type B or F strains when processed at 80°C and 600 MPa for up to 15 min. All C. botulinum type E strains were reduced by &gt;6.0 log units within 5 min under these conditions. Among the nonproteolytic type B strains, KAP 9-B was the most resistant, resulting in reductions of 2.7, 5.3, and 5.5 log, coinciding with D-values of 7.7, 3.4, and 1.8 min at 80°C and 600, 650, and 700 MPa, respectively. Of the two nonproteolytic type F strains, 610F was the most resistant, showing 2.6-, 4.5-, and 5.3-log reductions with D-values of 8.9, 4.3, and 1.8 min at 80°C and 600, 650, and 700 MPa, respectively. Pulsed-field gel electrophoresis was performed to examine the genetic relatedness of strains tested and to determine if strains with similar banding patterns also exhibited similar D-values. No correlation between the genetic fingerprint of a particular strain and its resistance to high pressure processing was observed.


2013 ◽  
Vol 76 (8) ◽  
pp. 1384-1392 ◽  
Author(s):  
N. RUKMA REDDY ◽  
KRISTIN M. MARSHALL ◽  
TRAVIS R. MORRISSEY ◽  
VIVIANA LOEZA ◽  
EDUARDO PATAZCA ◽  
...  

The aim of this study was to determine the resistance of multiple strains of Clostridium botulinum type A and proteolytic type B spores exposed to combined high pressure and thermal processing and compare their resistance with Clostridium sporogenes PA3679 and Bacillus amyloliquefaciens TMW-2.479-Fad-82 spores. The resistance of spores suspended in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer (0.05 M, pH 7.0) was determined at a process temperature of 105°C, with high pressures of 600, 700, and 750 MPa by using a laboratory-scale pressure test system. No surviving spores of the proteolytic B strains were detected after processing at 105°C and 700 MPa for 6 min. A &gt;7-log reduction of B. amyloliquefaciens spores was observed when processed for 4 min at 105°C and 700 MPa. D-values at 105°C and 700 MPa for type A strains ranged from 0.57 to 2.28 min. C. sporogenes PA3679 had a D-value of 1.48 min at 105°C and 700 MPa. Spores of the six type A strains with high D-values along with C. sporogenes PA3679 and B. amyloliquefaciens were further evaluated for their pressure resistance at pressures 600 and 750 MPa at 105°C. As the process pressure increased from 600 to 750 MPa at 105°C, D-values of some C. botulinum strains and C. sporogenes PA3679 spores decreased (i.e., 69-A, 1.91 to 1.33 min and PA3679, 2.35 to 1.29 min). Some C. botulinum type A strains were more resistant than C. sporogenes PA3679 and B. amyloliquefaciens to combined high pressure and heat, based on D-values determined at 105°C. Pulsed-field gel electrophoresis (PFGE) was also performed to establish whether strains with a similar restriction banding pattern also exhibited similar D-values. However, no correlation between the genomic background of a strain and its resistance to high pressure processing was observed, based on PFGE analysis. Spores of proteolytic type B strains of C. botulinum were less resistant to combined high pressure and heat (700 MPa and 105°C) treatment when compared with spores of type A strains.


Sign in / Sign up

Export Citation Format

Share Document