National Survey of Shiga Toxin–Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces

2016 ◽  
Vol 79 (11) ◽  
pp. 1868-1874 ◽  
Author(s):  
GLEN E. MELLOR ◽  
NARELLE FEGAN ◽  
LESLEY L. DUFFY ◽  
KATE E. McMILLAN ◽  
DAVID JORDAN ◽  
...  

ABSTRACT Escherichia coli O157 and six non-O157 Shiga toxin–producing E. coli (STEC) serotypes (O26, O45, O103, O111, O121, and O145, colloquially referred to as the “big 6”) have been classified as adulterants of raw nonintact beef products in the United States. While beef cattle are a known reservoir for the prototype STEC serotype, E. coli O157, less is known about the dissemination of non-O157 STEC serotypes in Australian cattle. In the present study, 1,500 fecal samples were collected at slaughter from adult (n =628) and young (n =286) beef cattle, adult (n =128) and young (n =143) dairy cattle, and veal calves (n = 315) across 31 Australian export-registered processing establishments. Fecal samples were enriched and tested for E. coli O157 and the big 6 STEC serotypes using BAX System PCR and immunomagnetic separation methods. Pathogenic STEC (pSTEC; isolates that possess stx, eae, and an O antigen marker for O157 or a big 6 serotype) were isolated from 115 samples (7.7%), of which 100 (6.7%) contained E. coli O157 and 19 (1.3%) contained a big 6 serotype. Four of the 115 samples contained multiple pSTEC serotypes. Among samples confirmed for big 6 pSTEC, 15 (1%) contained E. coli O26 and 4 (0.3%) contained E. coli O111. pSTEC of serotypes O45, O103, O121, and O145 were not isolated from any sample, even though genes indicative of E. coli belonging to these serotypes were detected by PCR. Analysis of animal classes revealed a higher pSTEC prevalence in younger animals, including veal (12.7%), young beef (9.8%), and young dairy (7.0%), than in adult animals, including adult beef (5.1%) and adult dairy (3.9%). This study is the largest of its kind undertaken in Australia. In contrast to E. coli O157 and consistent with previous findings, this study reports a relatively low prevalence of big 6 pSTEC serotypes in Australian cattle populations.

2007 ◽  
Vol 70 (10) ◽  
pp. 2230-2234 ◽  
Author(s):  
T. W. THOMPSON ◽  
T. P. STEPHENS ◽  
G. H. LONERAGAN ◽  
M. F. MILLER ◽  
M. M. BRASHEARS

Rapid enzyme-linked immunosorbent assays (ELISAs) are approved for detection of Escherichia coli O157 in beef products. However, these kits have also been used in the industry to detect this pathogen on hides or in feces of cattle, although this use has not been validated. The objective of this study was to compare commercially available ELISAs (E. coli Now, Reveal, and VIP) with immunomagnetic separation along with selective media to detect E. coli O157 on hides, in feces, and in medium- and low-level-inoculated ground beef and carcasses (simulated by using briskets) samples. Naturally infected hide and fecal samples were subjected to both the immunomagnetic separation method and ELISAs for the detection of E. coli O157. Additionally, E. coli O157 inoculated and noninoculated ground beef and beef briskets were used to simulate meat and carcass samples. When comparing the detection results from the ELISAs (E. coli Now, Reveal, and VIP) to the immunomagnetic separation method, poor agreement was observed for fecal samples (kappa = 0.10, 0.02, and 0.03 for E. coli Now, Reveal, and VIP, respectively), and fair-to-moderate agreement was observed for hide samples (kappa = 0.30, 0.51, and 0.29 for E. coli Now, Reveal, and VIP, respectively). However, there was near-perfect agreement between the immunomagnetic separation method and ELISAs for ground beef (kappa = 1, 1, and 0.80 for E. coli Now, Reveal, and VIP, respectively) and brisket (kappa = 1, 1, and 1 for E. coli Now, Reveal, and VIP, respectively) samples. Assuming immunomagnetic separation is the best available method, these data suggest that the ELISAs are not useful in detecting E. coli O157 from hide or fecal samples. However, when ELISAs are used on ground beef and beef brisket samples they can be used with a high degree of confidence.


1997 ◽  
Vol 60 (5) ◽  
pp. 462-465 ◽  
Author(s):  
DALE D. HANCOCK ◽  
DANIEL H. RICE ◽  
LEE ANN THOMAS ◽  
DAVID A. DARGATZ ◽  
THOMAS E. BESSER

Fecal samples from cattle in 100 feedlots in 13 states were bacteriologically cultured for Escherichia coli O157 that did not ferment sorbitol, lacked beta-glucuronidase, and possessed genes coding for Shiga-like toxin. In each feedlot 30 fresh fecal-pat samples were collected from each of four pens: with the cattle shortest on feed, with cattle longest on feed, and with cattle in two randomly selected pens. E. coli O157 was isolated from 210 (1.8%) of 11,881 fecal samples. One or more samples were positive for E. coli O157 in 63 of the 100 feedlots tested. E. coli O157 was found at roughly equal prevalence in all the geographical regions sampled. The prevalence of E. coli O157 in the pens with cattle shortest on feed was approximately threefold higher than for randomly selected and longest on feed pens. Of the E. coli O157 isolates found in this study, 89.52% expressed the H7 flagellar antigen. E. coli O157 was found to be widely distributed among feedlot cattle, but at a low prevalence, in the United States.


2005 ◽  
Vol 71 (7) ◽  
pp. 3405-3412 ◽  
Author(s):  
Michael A. Hornitzky ◽  
Kim Mercieca ◽  
Karl A. Bettelheim ◽  
Steven P. Djordjevic

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx 1, stx 2, eae, and ehxA were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth followed by plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of enterohemolytic colonies and on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting colonies. The high prevalence of the intimin gene eae was a feature of the STEC (35 [29.2%] of 120 isolates) and contrasted with the low prevalence (9 [0.5%] of 1,692 fecal samples possessed STEC with eae) of this gene among STEC recovered during extensive sampling of feces from healthy slaughter-age cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Forty-seven STEC serotypes were identified, including O5:H−, O8:H19, O26:H−, O26:H11, O113:H21, O157:H7, O157:H− and Ont:H− which are known to cause severe disease in humans and 23 previously unreported STEC serotypes. Serotypes Ont:H− and O113:H21 represented the two most frequently isolated STEC isolates and were cultured from nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive E. coli serotypes, considered to represent atypical EPEC, were identified, with O111:H− representing the most prevalent. Using both techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were cultured from 30 (15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture on BVCC agar following enrichment in EC (modified) broth was the most successful method for the isolation of STEC (24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation of EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important reservoirs of eae-positive E. coli.


2020 ◽  
Author(s):  
Dawood Al-Ajmi ◽  
Shafeeq Rahman ◽  
Sharmila Banu

Abstract Background: Shiga toxin-producing Escherichia coli (STEC) is a major source of food-borne illness around the world. E. coli O157 has been widely reported as the most common STEC serogroup and has emerged as an important enteric pathogen. Cattle, in particular have been identified as a major E. coli O157:H7 reservoir of human infections; however, the prevalence of this organism in camels, sheep, and goats is less understood. The aim of this study was to evaluate the occurrence and concentration of E. coli serotype O157 in the feces of healthy camels (n = 140), cattle (n =137), sheep (n = 141) and goats (n = 150) slaughtered in United Arab Emirates (UAE) for meat consumption between September 2017 and August 2018. We used immunomagnetic separation coupled with a culture-plating method to detect E. coli O157. Non-sorbitol fermenting colonies were assessed via latex-agglutination testing, and positive cultures were analyzed by performing polymerase chain reactions to detect genes encoding attaching and effacing protein (eaeA), hemolysin A (hlyA, also known as ehxA) and Shiga toxin (stx1 and stx2), and E. coli O157:H7 specific genes (rfb O157, uidA, and fliC). All E. coli O157 isolates were analyzed for their susceptibility to 20 selected antimicrobials.Results: E. coli O157 was observed in camels, goats, and cattle fecal samples at abundances of 4.3%, 2%, and 1.46%, respectively, but it was undetectable in sheep feces. The most prevalent E. coli O157 gene in all STEC isolates was stx2;, whereas, stx1 was not detected in any of the samples. The fecal samples from camels, goats, and cattle harbored E. coli O157 isolates that were 100% susceptible to cefotaxime, chloramphenicol, ciprofloxacin, norfloxacin, and polymyxin B.Conclusion: To our knowledge, this is the first report on the occurrence of E. coli O157 in slaughter animals in the UAE. Our results clearly demonstrate the presence of E. coli O157 in slaughtered animals, which could possibly contaminate meat products intended for human consumption.


2016 ◽  
Vol 14 (1) ◽  
pp. 63-68 ◽  
Author(s):  
MM Akter ◽  
S Majumder ◽  
KH MNH Nazir ◽  
M Rahman

Shiga toxin-producing Escherichia coli (STEC) are zoonotically important pathogen which causes hemorrhagic colitis, diarrhea, and hemolytic uremic syndrome in animals and humans. The present study was designed to isolate and identify the STEC from fecal samples of diarrheic cattle. A total of 35 diarrheic fecal samples were collected from Bangladesh Agricultural University (BAU) Veterinary Teaching Hospital. The samples were primarily examined for the detection of E. coli by cultural, morphological and biochemical characteristics, followed by confirmation of the isolates by Polymerase Chain Reaction (PCR) using gene specific primers. Later, the STEC were identified among the isolated E. coli through detection of Stx-1 and Stx-2 genes using duplex PCR. Out of 35 samples, 25 (71.43%) isolates were confirmed to be associated with E. coli, of which only 7 (28%) isolates were shiga toxin producers, and all of them were positive for Stx-1. However, no Stx-2 positive isolate could be detected. From this study, it may be concluded that cattle can act as a reservoir of STEC which may transmit to human or other animals.J. Bangladesh Agril. Univ. 14(1): 63-68, June 2016


2017 ◽  
Vol 80 (12) ◽  
pp. 2105-2111 ◽  
Author(s):  
Gavin Bailey ◽  
Long Huynh ◽  
Lachlan Govenlock ◽  
David Jordan ◽  
Ian Jenson

ABSTRACT Salmonella contamination of ground beef has been viewed as originating from the surface of carcasses. Recent studies have identified lymph nodes as a potential source of Salmonella contamination because these tissues play an active role in containment of pathogens in the live animal and because some lymph nodes are unavoidably present in manufacturing beef trimmings or primal cuts that may be incorporated into ground beef. A survey was conducted of the microbiological status of lymph nodes from Australian cattle at the time of slaughter to determine the prevalence of microbiological contamination. Sets of lymph nodes (n = 197), consisting of the superficial cervical (prescapular), prepectoral, axillary, presternal, popliteal, ischiatic, subiliac (precrural), coxalis, and iliofemoralis (deep inguinal), were collected from five geographically separated Australian abattoirs over a period of 14 months. Samples were tested for the presence of Salmonella spp. and Shiga toxin–producing Escherichia coli by BAX PCR assay. Aerobic plate count, E. coli, and coliforms were enumerated with a lower limit of detection of 80 CFU per node. The observed prevalence of Salmonella within peripheral lymph nodes was 0.48% (7 of 1,464). Two of the seven lymph nodes in which Salmonella organisms were detected came from the same animal. Grass-fed, grain-fed, and cull dairy cattle were all found to have detectable Salmonella in lymph nodes. All Salmonella detections occurred during cooler months of the year. No Shiga toxin–producing E. coli were detected. Aerobic microorganisms were detected above the limit of quantification in 3.2% of nodes (median count 2.24 log per node), and E. coli was detected in 0.8% of nodes (median count 3.05 log per node). The low prevalence of Salmonella and low concentration of aerobic microorganisms in Salmonella-positive lymph nodes of Australian cattle at the time of slaughter suggest that the likelihood of lymph nodes contributing significantly to the presence of Salmonella in ground beef is low.


2000 ◽  
Vol 63 (6) ◽  
pp. 819-821 ◽  
Author(s):  
DAVID W. K. ACHESON

Escherichia coli O157:H7 is but one of a group of Shiga toxin-producing E. coli (STEC) that cause both intestinal disease such as bloody and nonbloody diarrhea and serious complications like hemolytic uremic syndrome (HUS). While E. coli O157: H7 is the most renowned STEC, over 200 different types of STEC have been documented in meat and animals, at least 60 of which have been linked with human disease. A number of studies have suggested that non-O157 STEC are associated with clinical disease, and non-O157 STEC are present in the food supply. Non-O157 STEC, such as O111 have caused large outbreaks and HUS in the United States and other countries. The current policy in the United States is to examine ground beef for O157:H7 only, but restricting the focus to O157 will miss other important human STEC pathogens.


2005 ◽  
Vol 68 (10) ◽  
pp. 2224-2241 ◽  
Author(s):  
HUSSEIN S. HUSSEIN ◽  
LAURIE M. BOLLINGER

A large number of Shiga toxin–producing Escherichia coli (STEC) strains have caused major outbreaks and sporadic cases of human illnesses, including mild diarrhea, bloody diarrhea, hemorrhagic colitis, and the life-threatening hemolytic uremic syndrome. These illnesses have been traced to both O157 and non-O157 STEC. In a large number of STEC-associated outbreaks, the infections were attributed to consumption of ground beef or other beef products contaminated with cattle feces. Thus, beef cattle are considered reservoirs of STEC and can pose significant health risks to humans. The global nature of the human food supply suggests that safety concerns with beef will continue and the challenges facing the beef industry will increase at the production and processing levels. To be prepared to address these concerns and challenges, it is critical to assess the role of beef cattle in human STEC infections. In this review, published reports on STEC in beef cattle were evaluated to achieve the following specific objectives: (i) assess the prevalence of STEC in beef cattle, and (ii) determine the potential health risks of STEC strains from beef cattle. The latter objective is critically important because many beef STEC isolates are highly virulent. Global testing of beef cattle feces revealed wide ranges of prevalence rates for O157 STEC (i.e., 0.2 to 27.8%) and non-O157 STEC (i.e., 2.1 to 70.1%). Of the 261 STEC serotypes found in beef cattle, 44 cause hemolytic uremic syndrome and 37 cause other illnesses.


2002 ◽  
Vol 65 (7) ◽  
pp. 1172-1176 ◽  
Author(s):  
S. M. AVERY ◽  
A. SMALL ◽  
C.-A. REID ◽  
S. BUNCIC

Contamination of the brisket areas of the hides of healthy adult cattle with Shiga toxin–producing Escherichia coli O157 at slaughter in England was studied. In total, 73 cattle consignments comprising 584 animals delivered to one abattoir over 3 days during 1 week in July 2001 were studied: 26 cattle consignments arriving on Monday, 32 consignments arriving on Wednesday, and 15 consignments arriving on Friday. Consignment sizes ranged from 1 to 23 animals, with a mean consignment size of 8. The hide of the first animal to be slaughtered in each consignment was sampled by using a sponge swab moistened with 0.85% saline to rub an unmeasured brisket (ventral) area (ca. 30 by 30 cm). The process of isolating E. coli O157 from the swabs consisted of enrichment, screening with immunoprecipitation assay kits, and immunomagnetic separation. E. coli O157 was found on 24 of 73 (32.9%) cattle hides examined, and 21 of these 24 isolates produced Shiga toxins. The 24 E. coli O157 isolates produced six different pulsed-field gel electrophoresis profiles, and 18 (75%) of the isolates were of one prevalent clone. The high prevalence of one E. coli O157 clone on the hides of cattle at slaughter could be due to a high prevalence of that clone on the 18 farms involved (not investigated in the current study), in the postfarm transport or lairage environments, or both. Since the lairage environment, but not the farm of origin or the postfarm transport vehicle, was a factor common to all 18 cattle consignments, it could have played an important role in spreading the prevalent E. coli O157 clone to the cattle hides. Lairage pen floors and the stunning box floor were identified as the most probable sites along the unloading-to-slaughter route at which the brisket areas of cattle hides could become contaminated.


2008 ◽  
Vol 74 (20) ◽  
pp. 6289-6297 ◽  
Author(s):  
Dayna M. Brichta-Harhay ◽  
Michael N. Guerini ◽  
Terrance M. Arthur ◽  
Joseph M. Bosilevac ◽  
Norasak Kalchayanand ◽  
...  

ABSTRACT The hide and carcass hygiene of cull cattle at slaughter in four geographically distant regions of the United States was examined from July 2005 to April 2006 by measuring the aerobic plate counts (APC) and the prevalences and loads of Salmonella and Escherichia coli O157:H7. The geometric mean log10 APC CFU/100 cm2 levels on hides and preevisceration and postintervention carcasses ranged from 6.17 to 8.19, 4.24 to 6.47, and 1.46 to 1.96, respectively, and were highest in the summer (P < 0.0001). The average prevalences of Salmonella on hides and preevisceration and postintervention carcasses were 89.6% (95% confidence interval [CI], 85.1 to 94.0), 50.2% (95% CI, 40.9 to 59.5), and 0.8% (95% CI, 0.18 to 1.42), respectively. The prevalences of E. coli O157:H7 were 46.9% (95% CI, 37.3 to 56.6) and 16.7% (95% CI, 9.8 to 23.6) on hides and preevisceration carcasses, respectively. Examination of the concomitant incidence of Salmonella and E. coli O157:H7 showed that, on average, 33.3% (95% CI, 15.9 to 69.8) of cattle hide and 4.1% (95% CI, 0.98 to 17.3) of preevisceration carcass samples were contaminated with both pathogens. The pathogen prevalence on hides and carcasses was not significantly affected by the season; however, significant differences were observed between plants with respect to the incoming pathogen load and the ability to mitigate hide-to-carcass transfer. In spite of these differences, postintervention carcass contamination was significantly reduced (P < 0.001), likely as a result of the use of one or more of the processing interventions employed at each of the four processing plants examined.


Sign in / Sign up

Export Citation Format

Share Document