Inactivation of Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica under High Hydrostatic Pressure: A Quantitative Analysis of Existing Literature Data

2019 ◽  
Vol 82 (10) ◽  
pp. 1802-1814 ◽  
Author(s):  
SANDRINE GUILLOU ◽  
JEANNE-MARIE MEMBRÉ

ABSTRACT High hydrostatic pressure processing (HPP) is a mild preservation technique, and its use for processing foods has been widely documented in the literature. However, very few quantitative synthesis studies have been conducted to gather and analyze bacterial inactivation data to identify the mechanisms of HPP-induced bacterial inactivation. The purpose of this study was to conduct a quantitative analysis of three-decimal reduction times (t3δ) from a large set of existing studies to determine the main influencing factors of HPP-induced inactivation of three foodborne pathogens (Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica) in various foods. Inactivation kinetics data sets from 1995 to 2017 were selected, and t3δ values were first estimated by using the nonlinear Weibull model. Bayesian inference was then used within a metaregression analysis to build and test several models and submodels. The best model (lowest error and most parsimonious) was a hierarchical mixed-effects model including pressure intensity, temperature, study, pH, species, and strain as explicative variables and significant factors. Values for t3δ and ZP associated with inactivation under HPP were estimated for each bacterial pathogen, with their associated variability. Interstudy variability explained most of the variability in t3δ values. Strain variability was also important and exceeded interstudy variability for S. aureus, which prevented the development of an overall model for this pathogen. Meta-analysis is not often used in food microbiology but was a valuable quantitative tool for modeling inactivation of L. monocytogenes and Salmonella in response to HPP treatment. Results of this study could be useful for refining quantitative assessment of the effects of HPP on vegetative foodborne pathogens or for more precisely designing costly and labor-intensive experiments with foodborne pathogens.

Author(s):  
Hasan Ellahi ◽  
Elham Khalili Sadrabad ◽  
Seyed Hossein Hekmatimoghaddam ◽  
Ali Jebali ◽  
Jalal Sadeghizadeh-yazdi ◽  
...  

Background: Staphylococcus aureus, Salmonella enterica, Escherichia Coli (E. Coli) and Listeria monocytogenes are considered as important foodborne pathogens. Pistachia atlantica sub sp. Kurdica, called wild pistachio, has been known as an antimicrobial compound. The aim of this study was to determine the antimicrobial activity and chemical composition of this essential oil (EO) on some of foodborne pathogens. Methods: The EO of Pistachia atlantica was obtained by hydro-distillation and analyzed by GC-MASS. The antibacterial effects of Pistachia atlantica were evaluated at two concentrations of 10 and 15 µL against Staphylococcus aureus, E. Coli, Salmonella enterica, and Listeria monocytogenes using disk diffusion method. The analysis was done by SPSS. Results: In the current study, α-pinene (92.5%) and ß-pinene (1.62%) were the main components of Pistachia atlantica EO. The EO was most effective on Salmonella enterica, whereas, its effect on Listeria monocytogenes was the weakest. The results showed a significant difference in reducing Salmonella enterica in comparison to others (P < 0.05). Conclusion: The EO has inhibitory effects on the studied bacteria. Therefore, this EO can be used as a natural preservative to extend the shelf life of foods.


2020 ◽  
Vol 8 (6) ◽  
pp. 849 ◽  
Author(s):  
Abrar Sindi ◽  
Md. Bahadur Badsha ◽  
Barbara Nielsen ◽  
Gülhan Ünlü

Kefir, a fermented dairy beverage, exhibits antimicrobial activity due to many metabolic products, including bacteriocins, generated by lactic acid bacteria. In this study, the antimicrobial activities of artisanal kefir products from Fusion Tea (A), Britain (B), Ireland (I), Lithuania (L), the Caucuses region (C), and South Korea (K) were investigated against select foodborne pathogens. Listeria monocytogenes CWD 1198, Salmonella enterica serovar Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923, and Bacillus cereus ATCC 14579 were inhibited by artisanal kefirs made with kefir grains from diverse origins. Kefirs A, B, and I inhibited all bacterial indicator strains examined at varying levels, except Escherichia coli ATCC 12435 (non-pathogenic, negative control). Kefirs K, L, and C inhibited all indicator strains, except S. aureus ATCC 25923 and E. coli ATCC 12435. Bacteriocins present in artisanal kefirs were determined to be the main antimicrobials in all kefirs examined. Kefir-based antimicrobials are being proposed as promising natural biopreservatives as per the results of the study.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


LWT ◽  
2021 ◽  
pp. 112850
Author(s):  
Anna Joana Dittrich ◽  
Martina Ludewig ◽  
Steffen Rodewald ◽  
Peggy Gabriele Braun ◽  
Claudia Wiacek

Sign in / Sign up

Export Citation Format

Share Document