Hydrogen peroxide residue on tomato, apple, cantaloupe, and Romaine lettuce after treatments with cold plasma-activated hydrogen peroxide aerosols

Author(s):  
Xuetong Fan ◽  
Yuanyuan Song

Hydrogen peroxide (H 2 O 2 ) has long been studied as an aqueous sanitizer to enhance microbial safety of fresh produce. Recently, we demonstrated that cold plasma-activated H 2 O 2 aerosols, hereafter referred to as ionized hydrogen peroxide (iHP), reduced populations of Salmonella, Listeria, and E. coli by up to 5.5 logs on surfaces of various produce items. However, the amount and fate of H 2 O 2 residue left on fresh produce after treatments have not been evaluated. In the present study, H 2 O 2 residue levels on apples, tomatoes, cantaloupe, and Romaine lettuce were analyzed after treatments with 7.8% iHP at conditions that had been optimized and tailored for Salmonella reductions and each produce items. Results showed that higher residue levels were found on lettuce than on cantaloupes, tomatoes and apples immediately after treatments. During storage at 10 and 22°C, H 2 O 2 levels decreased rapidly and fell below <1 mg/kg within 1 day after treatments for all fresh produce items. Furthermore, the decrease was faster at 22°C than at 10°C. Most importantly, the levels of H 2 O 2 residue on the fresh produce items were lower than those after wash with 1% H 2 O 2 for 1 min. Overall, our results demonstrated that levels of H 2 O 2 residue on fresh produce surfaces decomposed rapidly after treatment with iHP and did not appear to pose a safety concern after 1 day of storage.

2012 ◽  
Vol 75 (12) ◽  
pp. 2208-2212 ◽  
Author(s):  
PETER M. A. TOIVONEN ◽  
CHANGWEN LU ◽  
SUSAN BACH ◽  
PASCAL DELAQUIS

Wounding of lettuce tissue has been examined previously by others in regard to browning reactions, and treatments to modulate wounding responses were evaluated for reduction of browning. However, the wounding process also releases oxygen radicals such as hydrogen peroxide. This study focused on the evaluation of two treatments that reduce hydrogen peroxide at cut surfaces (heat treatment and pyruvate addition) and one treatment that enhances its production (infusion with the fungal elicitor harpin). Hydrogen peroxide changes in response to treatment were also associated with resultant survival of Escherichia coli O157:H7, which was inoculated onto the lettuce before cutting. Heat-treated lettuce produced significantly less hydrogen peroxide, and microbial analysis showed that E. coli O157:H7 survival on packaged, heat-treated lettuce was higher than on non–heat-treated controls. Lettuce was also cut under a solution of sodium pyruvate (a well-known hydrogen peroxide quencher), and E. coli O157:H7 survival was found to be enhanced with that treatment. When lettuce was infused with harpin before cutting, hydrogen peroxide production was enhanced, and this was associated with reduced survival of E. coli O157:H7. These results collectively support the hypothesis that modulation of wound-generated hydrogen peroxide can have an influence on E. coli O157:H7 survival on cut and packaged romaine lettuce.


2017 ◽  
Vol 65 ◽  
pp. 1-6 ◽  
Author(s):  
Sea C. Min ◽  
Si Hyeon Roh ◽  
Brendan A. Niemira ◽  
Glenn Boyd ◽  
Joseph E. Sites ◽  
...  
Keyword(s):  

2016 ◽  
Vol 80 (1) ◽  
pp. 35-43 ◽  
Author(s):  
SEA C. MIN ◽  
SI HYEON ROH ◽  
GLENN BOYD ◽  
JOSEPH E. SITES ◽  
JOSEPH UKNALIS ◽  
...  

ABSTRACT The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4°C for 7 days. Effects investigated included the color, carbon dioxide (CO2) generation, weight loss, and surface morphology of the lettuce during storage. Romaine lettuce pieces, with or without inoculation with a cocktail of three strains of E. coli O157:H7 (~6 log CFU/g of lettuce), were packaged in a polyethylene terephthalate commercial clamshell container and treated at 34.8 kV at 1.1 kHz for 5 min by using a DACP treatment system equipped with a pin-type high-voltage electrode. Romaine lettuce samples were analyzed for inactivation of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds, color, CO2 generation, weight loss, and surface morphology during storage at 4°C for 7 days. The DACP treatment reduced the initial counts of E. coli O157:H7 and total aerobic microorganisms by ~1 log CFU/g, with negligible temperature change from 24.5 ± 1.4°C to 26.6 ± 1.7°C. The reductions in the numbers of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds during storage were 0.8 to 1.5, 0.7 to 1.9, and 0.9 to 1.7 log CFU/g, respectively. DACP treatment, however, did not significantly affect the color, CO2 generation, weight, and surface morphology of lettuce during storage (P > 0.05). Some mesophilic aerobic bacteria were sublethally injured by DACP treatment. The results from this study demonstrate the potential of applying DACP as a postpackaging treatment to decontaminate lettuce contained in conventional plastic packages without altering color and leaf respiration during posttreatment cold storage.


2012 ◽  
Vol 75 (11) ◽  
pp. 2028-2030 ◽  
Author(s):  
ANDREW LIN ◽  
LAM NGUYEN ◽  
LAURIE M. CLOTILDE ◽  
JULIE A. KASE ◽  
INSOOK SON ◽  
...  

The ability to detect and isolate Shiga toxin–producing Escherichia coli (STEC) remains a major challenge for food microbiologists. Although methods based on nucleic acids and antibodies have improved detection of STECs in foods, isolation of these bacteria remains arduous. STEC isolation is necessary for matching food, environmental, and clinical isolates during outbreak investigations and for distinguishing between pathogenic and nonpathogenic organisms. STEC heart infusion washed blood agar with mitomycin-C (SHIBAM) is a modification of washed sheep blood agar prepared by adding mitomycin-C and optimizing both the washed blood and base agar to better isolate STECs. Most STEC isolates produce a zone of hemolysis on SHIBAM plates and are easily distinguishable from background microbiota. Here, we present data supporting the use of SHIBAM to isolate STECs from fresh produce. SHIBAM was tested for accuracy in identifying STECs (365 of 410 STEC strains were hemolytic, and 63 of 73 E. coli strains that did not produce Shiga toxin were not hemolytic) and for recovery from artificially inoculated fresh produce (11 of 24 romaine lettuce samples and 6 of 24 tomato samples). STEC recovery with SHIBAM agar was greatly improved when compared with recovery on Levine's eosin–methylene blue agar as a reference method.


2021 ◽  
Vol 111 ◽  
pp. 117-124
Author(s):  
P. Kumkrong ◽  
L. Scoles ◽  
Y. Brunet ◽  
S. Baker ◽  
P.H.J. Mercier ◽  
...  

2009 ◽  
Vol 27 (No. 6) ◽  
pp. 454-462 ◽  
Author(s):  
M.A. Martínez-Téllez ◽  
F.J. Rodríguez-Leyva ◽  
I.E. Espinoza-Medina ◽  
I. Vargas-Arispuro ◽  
A.A. Gardea ◽  
...  

The absence of good agricultural and manufacturing practices in the production and postharvest handling of fresh produce, such as green asparagus or green onions increase the contamination risk by biological hazards like Salmonella. The objective of this work was to investigate the efficacy of chlorine (200 and 250 ppm), hydrogen peroxide (1.5% and 2%), and lactic acid (1.5% and 2%) sanitisers during different exposure times (40, 60, and 90 s) on the reduction of <i>Salmonella enterica</i> subspecie <i>enterica</i> serovar Typhimurium in inoculated fresh green asparagus and green onions. Washing with clean water only reduced < 1 log10 CFU/g in both vegetables. The most effective sanitiser evaluated for fresh green asparagus and green onions disinfection appeared to be 2% lactic acid reducing <i>Salmonella</i> growth close to 3 log<sub>10</sub> CFU/g. Hydrogen peroxide was the least effective agent for <i>Salmonella</i> Typhimurium reduction. No effect was observed of the exposure time of inoculated product to sanitiser up to 90 seconds. These results confirm that lactic acid could be used as an alternative for fresh green asparagus and green onions sanitation.


1982 ◽  
Vol 152 (1) ◽  
pp. 81-88
Author(s):  
E H Berglin ◽  
M B Edlund ◽  
G K Nyberg ◽  
J Carlsson

Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the catalase. This inhibition, however, could not fully explain the 100-fold increase in hydrogen peroxide sensitivity of the organism in the presence of L-cysteine. Of other compounds tested only some thiols potentiated the bactericidal effect of hydrogen peroxide. These thiols were effective, however, only at concentrations significantly higher than 0.1 mM. The effect of L-cysteine and L-cystine could be annihilated by the metal ion chelating agent 2,2'-bipyridyl. DNA breakage in E. coli K-12 was demonstrated under conditions where the organisms were killed by hydrogen peroxide.


Author(s):  
Bing Han ◽  
Xiaoyu Han ◽  
Mengmeng Ren ◽  
Yilin You ◽  
Jicheng Zhan ◽  
...  

Diseases caused by harmful microorganisms pose a serious threat to human health. Safe and environment-friendly disinfectants are, therefore, essential in preventing and controlling such pathogens. This study aimed to investigate the antimicrobial activity and mechanism of a novel hydrogen peroxide and silver (H 2 O 2 -Ag + ) complex (HSC) in combatting Staphylococcus aureus ATCC 29213, Escherichia coli O157:H7 NCTC 12900 and Salmonella typhimurium SL 1344. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against S. aureus were found to be 0.014 % H 2 O 2 -3.125 mg/L Ag + , while 0.028 % H 2 O 2 -6.25 mg/L Ag + for both E. coli and S. typhimurium . Results of the growth curve assay and time-kill trial suggest that the HSC could inhibit the growth of the tested bacteria, as 99.9 % of viable cells were killed following treatment at the 1 MIC for 3 h. Compared with Oxytech D10 disinfectant (0.25 % H 2 O 2 -5 mg/L Ag + ), the HSC exhibited better antibacterial efficacy at a lower concentration (0.045 % H 2 O 2 -10 mg/L Ag + ). The mechanism of antibacterial action of HSC was found including the disruption of the bacterial cell membrane, followed by entry into the bacteria cell to reduce intracellular adenosine triphosphate (ATP) concentration, and inhibit the activity of antioxidases, superoxide dismutase (SOD) and catalase (CAT). The enhanced bactericidal effect of hydrogen peroxide combined with silver indicates a potential for its application in environmental disinfection, particularly in the food industry.


Sign in / Sign up

Export Citation Format

Share Document