Relationship of growth conditions to desiccation tolerance of Salmonella enterica, Escherichia coli, and Listeria monocytogenes

Author(s):  
Rachel K Streufert ◽  
Susanne E Keller ◽  
Joelle K Salazar

Growth on solid media as sessile cells is believed to increase the desiccation tolerance of Salmonella enterica . However, the reasons behind increased resistance have not been well explored. In addition, the same effect has not been examined for other foodborne pathogens such as pathogenic Escherichia coli or Listeria monocytogenes . The purpose of this research was two-fold: first, to determine the role of oxygenation during growth on the desiccation resistance of S. enterica , E. coli , and L. monocytogenes , and second, to determine the effect of sessile versus planktonic growth on the desiccation resistance of these pathogens. Three different serotypes each of Salmonella , E. coli , and L. monocytogenes were cultured in trypticase soy broth with 0.6% yeast extract (TSBYE), with (aerobic) shaking or on TSBYE with agar (TSAYE) under either aerobic or anaerobic conditions and harvested in stationary phase. After adding cell suspensions to cellulose filter disks, pathogen survival was determined by enumeration at 0 and after drying for 24 h. Results showed statistical differences in harvested initial populations prior to drying (0 h). For Salmonella , a correlation was found between high initial population and greater survival on desiccation (p = 0.05). In addition, statistical differences (p ≤ 0.05) between survival based on growth type were identified. However, differences found were not the same for the three pathogens, or between their serotypes. In general, Salmonella and E. coli desiccation resistance followed the pattern of aerobic agar media ≥ liquid media ≥ anaerobic agar media. For L. monocytogenes serotypes, resistance to desiccation was not statistically different based on mode of growth. These results indicate growth on solid media under aerobic conditions is not always necessary for optimal desiccation survival but may be beneficial when the desiccation resistance of the test serotype is unknown.

2020 ◽  
Vol 83 (2) ◽  
pp. 211-220 ◽  
Author(s):  
QUINCY J. SUEHR ◽  
FANGYU CHEN ◽  
NATHAN M. ANDERSON ◽  
SUSANNE E. KELLER

ABSTRACT One intrinsic characteristic of low-moisture foods that is frequently overlooked is pH. Although pH affects the survival of microorganisms in high-moisture foods, its influence in low-moisture foods with less available moisture has not been examined. Escherichia coli O157:H7, E. coli O121, Salmonella enterica Anatum, and S. enterica Agona were grown on solid media with and without added glucose, harvested, and then suspended in buffer at pH 4, 5, and 7 for 10 min. All cultures were spotted individually onto cellulose filters and dried in a biohazard cabinet (23 ± 2°C) overnight (24 ± 2 h) and then stored in a 25°C incubator at 33% relative humidity. Populations were examined at regular intervals up to 26 (E. coli) or 29 (Salmonella) days. Additional controls for pH consisted of cultures held in buffer at pH 4, 5, and 7 at 25°C for the same time periods as the desiccated cells. For all strains tested, pH had an effect on survival whether stored dried or in liquid buffer (P < 0.05). However, when grown on solid media, acid adaptation (grown with glucose) before acid treatment did not appear beneficial to Salmonella during desiccation. Instead, both acid-adapted Salmonella serovars appeared less resistant during drying than did non–acid-adapted cells. Once dried, the rates of decline for Salmonella were not significantly different for acid-adapted and nonadapted cells (P > 0.05), indicating similar persistence following desiccation. A reverse trend was observed for E. coli O121; acid adaptation on solid media improved survival during desiccation and subsequent storage at low pH (P < 0.05). E. coli O157:H7 survival was significantly lower than that of either Salmonella or E. coli O121 under all conditions tested. Results indicate that the response to desiccation and pH stress differs between the microorganisms and under different growth conditions. HIGHLIGHTS


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2013 ◽  
Vol 79 (15) ◽  
pp. 4613-4619 ◽  
Author(s):  
Patrick Studer ◽  
Werner E. Heller ◽  
Jörg Hummerjohann ◽  
David Drissner

ABSTRACTSprouts contaminated with human pathogens are able to cause food-borne diseases due to the favorable growth conditions for bacteria during germination and because of minimal processing steps prior to consumption. We have investigated the potential of hot humid air, i.e., aerated steam, to treat alfalfa and mung bean seeds which have been artificially contaminated withEscherichia coliO157:H7,Salmonella entericasubsp.entericaserovar Weltevreden, andListeria monocytogenesScott A. In addition, a recently collectedE. coliO178:H12 isolate, characterized by a reduced heat sensitivity, was exposed to the treatment described. Populations ofE. coliO157:H7 andS. entericaon alfalfa and mung bean seeds could be completely eliminated by a 300-s treatment with steam at 70 ± 1°C as revealed by enrichment studies.L. monocytogenesandE. coliO178:H12 could not be completely eliminated from artificially inoculated seeds. However, bacterial populations were reduced by more than 5 log CFU/g on alfalfa and by more than 4 log CFU/g on mung bean seeds. The germination rate of mung beans was not affected by the 300-s treatment compared to the germination rate of untreated seeds whereas that of alfalfa seeds was significantly lower by 11.9%. This chemical-free method is an effective alternative to the 20,000-ppm hypochlorite treatment presently recommended by the U.S. Food and Drug Administration (FDA).


2013 ◽  
Vol 76 (7) ◽  
pp. 1245-1249 ◽  
Author(s):  
F. BREIDT ◽  
K. KAY ◽  
J. COOK ◽  
J. OSBORNE ◽  
B. INGHAM ◽  
...  

A critical factor in ensuring the safety of acidified foods is the establishment of a thermal process that assures the destruction of acid-resistant vegetative pathogenic and spoilage bacteria. For acidified foods such as dressings and mayonnaises with pH values of 3.5 or higher, the high water phase acidity (acetic acid of 1.5 to 2.5% or higher) can contribute to lethality, but there is a lack of data showing how the use of common ingredients such as acetic acid and preservatives, alone or in combination, can result in a 5-log reduction for strains of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in the absence of a postpackaging pasteurization step. In this study, we determined the times needed at 10°C to achieve a 5-log reduction of E. coli O157:H7, S. enterica, and L. monocytogenes in pickling brines with a variety of acetic and benzoic acid combinations at pH 3.5 and 3.8. Evaluation of 15 different acid-pH combinations confirmed that strains of E. coli O157:H7 were significantly more acid resistant than strains of S. enterica and L. monocytogenes. Among the acid conditions tested, holding times of 4 days or less could achieve a 5-log reduction for vegetative pathogens at pH 3.5 with 2.5% acetic acid or at pH 3.8 with 2.5% acetic acid containing 0.1% benzoic acid. These data indicate the efficacy of benzoic acid for reducing the time necessary to achieve a 5-log reduction in target pathogens and may be useful for supporting process filings and the determination of critical controls for the manufacture of acidified foods.


2008 ◽  
Vol 74 (15) ◽  
pp. 4853-4866 ◽  
Author(s):  
Hyochin Kim ◽  
Arun K. Bhunia

ABSTRACT Multipathogen detection on a single-assay platform not only reduces the cost for testing but also provides data on the presence of pathogens in a single experiment. To achieve this detection, a multipathogen selective enrichment medium is essential to allow the concurrent growth of pathogens. SEL broth was formulated to allow the simultaneous growth of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. The results were compared to those obtained with the respective individual selective enrichment broths, Rappaport-Vassiliadis (RV) for S. enterica, modified E. coli broth with 20 mg of novobiocin/liter for E. coli O157:H7, and Fraser broth for L. monocytogenes, and a currently used universal preenrichment broth (UPB). The growth of each pathogen in SEL inoculated at 101 or 103 CFU/ml was superior to that in the respective individual enrichment broth, except in the case of RV, in which Salmonella cells inoculated at both concentrations grew equally well. In mixed-culture experiments with cells of the three species present in equal concentrations or at a 1:10:1,000 ratio, the overall growth was proportional to the initial inoculation levels; however, the growth of L. monocytogenes was markedly suppressed when cells of this species were present at lower concentrations than those of the other two species. Further, SEL was able to resuscitate acid- and cold-stressed cells, and recovery was comparable to that in nonselective tryptic soy broth containing 6% yeast extract but superior to that in the respective individual selective broths. SEL promoted the growth of all three pathogens in a mixture in ready-to-eat salami and in turkey meat samples. Moreover, each pathogen was readily detected by a pathogen-specific immunochromatographic lateral-flow or multiplex PCR assay. Even though the growth of each pathogen in SEL was comparable to that in UPB, SEL inhibited greater numbers of nontarget organisms than did UPB. In summary, SEL was demonstrated to be a promising new multiplex selective enrichment broth for the detection of the three most prominent food-borne pathogens by antibody- or nucleic acid-based methods.


2012 ◽  
Vol 14 (1) ◽  
pp. 57-67 ◽  
Author(s):  
C. Valeriano ◽  
R.H. Piccoli ◽  
M.G. Cardoso ◽  
E. Alves

Objetivou-se identificar e quantificar os constituintes e avaliar a atividade antimicrobiana dos óleos essenciais de Mentha piperita, Cymbopogon citratus, Ocimum basilicum e Origanum majorana contra cepas de Escherichia coli enteropatogênica, Salmonella enterica Enteritidis, Listeria monocytogenes e Enterobacter sakazaki. A obtenção dos óleos essenciais foi realizada a partir de folhas secas, empregando-se a técnica de hidrodestilação e utilizando-se a aparelho de Clevenger modificado. A atividade antibacteriana dos óleos essenciais foi determinada pelo método de difusão em ágar. Observou-se que os óleos essenciais inibiram o crescimento bacteriano, mas a efetividade foi variada. Entre os óleos essenciais testados, M. piperita apresentou maior atividade antibacteriana para E. coli, (8.106 UA mL-1) quando comparada as demais bactérias, atividade moderada para Salmonella enterica Enteritidis e Enterobacter sakazakii (1.706 e 3.200 UA mL-1 respectivamente) e baixa atividade para Listeria monocytogenes (106,67 UA mL-1). Já óleo essencial de Cymbopogon citratus apresentou maior atividade antimicrobiana frente a E. coli (9.386 UA mL-1) e atividade moderada frente a Enterobacter sakazakii, Salmonella enterica Enteritidis e Listeria monocytogenes (2.773 UA mL-1 para ambas). Ocimum basilicum apresentou maior atividade antibacteriana frente E. coli e Enterobacter sakazakii (6.826 e 8.106 UA mL-1 respectivamente), moderada atividade frente a Salmonella enterica Enteritidis (1.600 UA mL-1) e não apresentou atividade frente a Listeria monocytogenes.Origanum majorana também foi testado neste estudo e apresentou maior atividade antimicrobiana frente E. coli (5.973 UA mL-1), atividade moderada para Salmonella enterica Enteritidis e Enterobacter sakazakii (1.706 e 2.346 UA mL-1 , respectivamente) e não apresentou atividade para Listeria monocytogenes.


2011 ◽  
Vol 74 (9) ◽  
pp. 1552-1557 ◽  
Author(s):  
O. RODRÍGUEZ-GARCIA ◽  
V. M. GONZÁLEZ-ROMERO ◽  
E. FERNÁNDEZ-ESCARTÍN

This study was intended to evaluate the bactericidal effect of electrolyzed oxidizing water (EOW) and chlorinated water on populations of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes inoculated on avocados (Persea americana var. Hass). In the first experiment, inoculated avocados were treated with a water wash applied by spraying tap water containing 1 mg/liter free chlorine for 15 s (WW); WW treatment and then spraying sodium hypochlorite in water containing 75 mg/liter free chlorine for 15 s (Cl75); WW treatment and then spraying alkaline EOW for 30 s (AkEW) and then spraying acid EOW (AcEW) for 15 s; and spraying AkEW and then AcEW. In another experiment, the inoculated avocados were treated by spraying AkEW and then AcEW for 15, 30, 60, or 90 s. All three pathogen populations were lowered between 3.6 and 3.8 log cycles after WW treatment. The application of Cl75 did not produce any further reduction in counts, whereas AkEW and then AcEW treatment resulted in significantly lower bacterial counts for L. monocytogenes and E. coli O157:H7 but not for Salmonella. Treatments with AkEW and then AcEW produced a significant decrease in L. monocytogenes, Salmonella, and E. coli O157:H7 populations, with estimated log reductions of 3.9 to 5.2, 5.1 to 5.9, and 4.2 to 4.9 log CFU/cm2, respectively. Spraying AcEW for more than 15 s did not produce any further decrease in counts of Salmonella or E. coli O157:H7, whereas L. monocytogenes counts were significantly lower after spraying AcEW for 60 s. Applying AkEW and then AcEW for 15 or 30 s seems to be an effective alternative to reduce bacterial pathogens on avocado surfaces.


2008 ◽  
Vol 74 (8) ◽  
pp. 2441-2446 ◽  
Author(s):  
M. B. Rasmussen ◽  
L. B. Oddershede ◽  
H. Siegumfeldt

ABSTRACT We investigated the degree of physiological damage to bacterial cells caused by optical trapping using a 1,064-nm laser. The physiological condition of the cells was determined by their ability to maintain a pH gradient across the cell wall; healthy cells are able to maintain a pH gradient over the cell wall, whereas compromised cells are less efficient, thus giving rise to a diminished pH gradient. The pH gradient was measured by fluorescence ratio imaging microscopy by incorporating a pH-sensitive fluorescent probe, green fluorescent protein or 5(6)-carboxyfluorescein diacetate succinimidyl ester, inside the bacterial cells. We used the gram-negative species Escherichia coli and three gram-positive species, Listeria monocytogenes, Listeria innocua, and Bacillus subtilis. All cells exhibited some degree of physiological damage, but optically trapped E. coli and L. innocua cells and a subpopulation of L. monocytogenes cells, all grown with shaking, showed only a small decrease in pH gradient across the cell wall when trapped by 6 mW of laser power for 60 min. However, another subpopulation of Listeria monocytogenes cells exhibited signs of physiological damage even while trapped at 6 mW, as did B. subtilis cells. Increasing the laser power to 18 mW caused the pH gradient of both Listeria and E. coli cells to decrease within minutes. Moreover, both species of Listeria exhibited more-pronounced physiological damage when grown without shaking than was seen in cells grown with shaking, and the degree of damage is therefore also dependent on the growth conditions.


2000 ◽  
Vol 63 (7) ◽  
pp. 907-911 ◽  
Author(s):  
SHU-ER YANG ◽  
CHENG-CHUN CHOU

Growth and survival of Escherichia coli O157:H7 and Listeria monocytogenes in steamed eggs and scrambled eggs held at different temperatures (5, 18, 22, 37, 55, and 60°C) were investigated in the present study. Among the holding temperatures tested, both pathogens multiplied best at 37°C followed by 22, 18, and 5°C. In general, E. coli O157:H7 grew better in the egg products than L. monocytogenes did at all the storage temperatures tested except at 5°C. E. coli O157:H7 did not grow in steamed eggs and scrambled eggs held at 5°C. L. monocytogenes showed a slight population increase of ∼0.6 to 0.9 log CFU/g in these egg products at the end of the 36-h storage period at 5°C. The population of both pathogens detected in the egg products was affected by the initial population, holding temperature, and length of the holding period. It was also noted that L. monocytogenes was more susceptible than E. coli O157:H7 in steamed eggs held at 60°C. After holding at 60°C for 1 h, no detectable viable cells of L. monocytogenes with a population reduction of 5.4 log CFU/g was observed in steamed eggs, whereas a lower population reduction of only ∼0.5 log CFU/ml was noted for E. coli O157:H7.


Sign in / Sign up

Export Citation Format

Share Document