Desiccation survival in Salmonella enterica, Escherichia coli and Enterococcus faecium related to initial cell concentration and cellular components

Author(s):  
Joelle K Salazar ◽  
Bereket Tesfaldet ◽  
Michelle Zamperlini ◽  
Rachel Streufert ◽  
Megan Fay ◽  
...  

Salmonella enterica is well-known for its ability to survive and persist in low-moisture environments.  Previous studies have indicated a link between the initial cell concentration and the population of Salmonella that survive upon desiccation and subsequent storage; however, how the initial cell concentration affects survival is unknown.  This study examined the basis of this phenomena and whether it occurred in other microorganisms, specifically Shiga toxigenic Escherichia coli (STEC), and Enterococcus faecium . Salmonella, STEC, and E. faecium were grown as lawns on TSAYE and harvested using buffered peptone water (BPW). To determine recovery at different initial cell levels, cultures were diluted to 9, 7, and 5 log CFU/mL and applied to filters.  Filters were dried for 24 h, then stored for 28 d at 25°C/33% RH. During storage, cells were recovered from filters using BPW and cultivated on TSAYE.  Both Salmonella and E. coli , but not E. faecium , showed non-proportional recovery. Less viability remained with lower initial starting population after 24 h desiccation such that ≥10 log CFU/mL were recovered when 11 log CFU/mL was desiccated, but <3 log CFU/mL were recovered when 5 log CFU/mL was desiccated. Once dried, persistence did not appear affected by initial cell concentration. When dead cells (heat-treated) were added to the diluent, recovery of Salmonella was proportional with respect to the initial cell concentration. To further examine the response on desiccation, Salmonella was diluted in BPW containing one of 11 different test cell components related to quorum sensing or known to affect desiccation resistance to assess recovery and persistence. Of the 11 additions only cell debris fractions, cell-free extract, and peptidoglycan improved recovery of Salmonella . Desiccation survival appears related to cell wall components, however, the exact mechanism affecting survival remains unknown.

1998 ◽  
Vol 38 (7) ◽  
pp. 19-24 ◽  
Author(s):  
C.-J. Lu ◽  
C. M. Lee ◽  
M.-S. Chung

The comparison of TCE cometabolic removal by methane, toluene, and phenol utilizers was conducted with a series of batch reactors. Methane, toluene, or phenol enriched microorganisms were used as cell source. The initial cell concentration was about 107 cfu/mL. Methane, toluene, and phenol could be readily biodegraded resulting in the cometabolic removal of TCE. Among the three primary carbon sources studied, the presence of phenol provided the best cometabolic removal of TCE. When the concentration of carbon source was 3 mg-C/L, the initial TCE removal rates initiated by methane, toluene, and phenol utilizers were 1.5, 30, and 100 μg/L-hr, respectively. During the incubation period of 80 hours, TCE removal efficiencies were 26% and 96% with the presence of methane and toluene, respectively. However, it was 100% within 20 hours with the presence of phenol. For phenol utilizers, the initial TCE removal rates were about the same, when the phenol concentrations were 1.35, 2.7, and 4.5 mg/L. However, TCE removal was not proportional to the concentrations of phenol. TCE removal was hindered when the phenol concentration was higher than 4.5 mg/L because of the rapid depletion of dissolved oxygen. The presence of toluene also initiated cometabolic removal of TCE. The presence of toluene at 3 and 5 mg/L resulted in similar TCE removal. The initial TCE removal rate was about 95 μg/L-hr at toluene concentrations of 3 and 5 mg/L compared to 20 μg/L-hr at toluene concentration of 1 mg/L.


2013 ◽  
Vol 79 (23) ◽  
pp. 7122-7129 ◽  
Author(s):  
Il-Kyu Park ◽  
Dong-Hyun Kang

ABSTRACTThe effect of electric field-induced ohmic heating for inactivation ofEscherichia coliO157:H7,Salmonella entericaserovar Typhimurium, andListeria monocytogenesin buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (P< 0.05) from that resulting from conventional heating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (P< 0.05), and these differences increased with increasing levels of inactivation of three food-borne pathogens. These results demonstrate that ohmic heating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating.


1955 ◽  
Vol 69 (3) ◽  
pp. 244-249 ◽  
Author(s):  
Cecil P. Major ◽  
John D. McDougal ◽  
Arthur P. Harrison

2019 ◽  
Vol 26 (1) ◽  
pp. 119-130
Author(s):  
Ricardo Santos ◽  
Elizabeth Paitán ◽  
Alejandrina Sotelo ◽  
Doris Zúñiga ◽  
Carlos Vílchez

El objetivo de este estudio es caracterizar molecularmente bacterias con potencial probiótico aisladas de heces de neonatos humanos. Se evaluó 60 muestras de heces de neonatos (0-3 días) se enriquecieron en caldo Man Rogosa y Sharp (MRS) a 37°C/24h. Se seleccionó y se sometió a pruebas in vitro con sales biliares, resistencia a pH bajo y actividad antimicrobiana frente a Escherichia coli ATCC25922, E. coli ATCC35218, Salmonella enterica y Listeria inocua mediante el ensayo difusión en agar. La identificación molecular se realizó con amplificaciones PCR-BOX y el secuenciamiento del gen 16S rRNA. Se aislaron un total de 48 cepas y todas presentaron resistencia a pH 3 y 0.3% sales biliares; 3 cepas mostraron actividad antimicrobiana frente a E. coli ATCC25922, 1 cepa frente a E. coli ATCC35218, 5 cepas frente a L. inocua y todas frente a S. entérica. De las 48 cepas se obtuvieron dos perfiles BOX-PCR pertenecientes a los géneros de Lactobacillus y Enterococcus. Nueve cepas (C52, C61, C71, C112, C16 2, C192, C20, C35, y C42) presentaron un 100% de similaridad a L. plantarum ATCC 14917T [ACGZ01000098] y dos cepas (C15 y C40) un 99.93% y 99.80% de similaridad, respectivamente a Enterococcus faecium CGMCC 1.2136T [AJKH01000109]; estas cepas mostraron actividad en leche con diferencias significativas (p valor < 0.05) en la cinética de pH 3. En conclusión se encontró bacterias con potencial probiótico.


Author(s):  
Frank K. Agbogbo ◽  
Guillermo Coward-Kelly ◽  
Mads Torry-Smith ◽  
Kevin Wenger ◽  
Thomas W. Jeffries

Sign in / Sign up

Export Citation Format

Share Document