scholarly journals Upper mantle velocity structure beneath Italy from direct and secondary P-wave teleseismic tomography

1997 ◽  
Vol 40 (1) ◽  
Author(s):  
G. B. Cimini ◽  
P. De Gori

High-quality teleseismic data digitally recorded by the National Seismic Network during 1988-1995 have been analysed to tomographically reconstruct the aspherical velocity structure of the upper mantle beneath the Italian region. To improve the quality and the reliability of the tomographic images, both direct (P, PKPdf) and secondary (pP,sP,PcP,PP,PKPbc,PKPab) travel-time data were used in the inversion. Over 7000 relative residuals were computed with respect to the IASP91 Earth velocity model and inverted using a modified version of the ACH technique. Incorporation of data of secondary phases resulted in a significant improvement of the sampling of the target volume and of the spatial resolution of the heterogeneous zones. The tomographic images show that most of the lateral variations in the velocity field are confined in the first ~250 km of depth. Strong low velocity anomalies are found beneath the Po plain, Tuscany and Eastern Sicily in the depth range between 35 and 85 km. High velocity anomalies dominate the upper mantle beneath the Central-Western Alps, Northern-Central Apennines and Southern Tyrrhenian sea at lithospheric depths between 85 and 150 km. At greater depth, positive anomalies are still observed below the northernmost part of the Apenninic chain and Southern Tyrrhenian sea. Deeper anomalies present in the 3D velocity model computed by inverting only the first arrivals dataset, generally appear less pronounced in the new tomographic reconstructions. We interpret this as the result of the ray sampling improvement on the reduction of the vertical smearing effects.

1975 ◽  
Vol 65 (4) ◽  
pp. 1013-1021
Author(s):  
Antonio Bottari

Abstract In this article, P travel-time residuals for the Messina station are analyzed in order to investigate the Tyrrhenian upper mantle, which is considered to be crossed by a lithospheric slab. A first set of 24 residuals derived from deep earthquakes of the southern Tyrrhenian Sea show early arrivals of, on the average, −1.3 sec at Messina. In addition, these negative residuals are associated with initial motion of the dilatation type. On the contrary, the few deep earthquakes which produce, as first motion, a compression at the Messina station, are associated with late arrivals of about 1 sec. These results are considered and discussed in order to analyze the hypocentral mechanism and P-wave transmission through the lithospheric slab. A second and wider analysis is then extended to 206 earthquakes which have, with respect to Messina, an epicentral location in the distance range 16° to 103° and azimuthal orientation Z in the interval 180° to 380°. The first conclusion from this analysis is that the P travel times observed at Messina for epicentral distances in the range 20° to 103° and 245° ≦ Z ≦ 380° are generally 0.5 to 3 sec less than those given in the Jeffreys-Bullen tables. Finally, a further improvement on the foregoing result has been obtained. This gives further confirmation of the consistency of regional variations of the P travel times with a slab model for the Tyrrhenian deep structures. As a matter of fact, the comparison between the travel times of Messina and a standard provided by observations in the stations of Rome and Trieste confirms early arrivals of about 1 sec on the seismic paths which cross the upper mantle in the southern Tyrrhenian region.


1993 ◽  
Vol 30 (12) ◽  
pp. 2389-2403 ◽  
Author(s):  
D. M. O'Leary ◽  
R. M. Clowes ◽  
R. M. Ellis

We applied an iterative combination of two-dimensional traveltime inversion and amplitude forward modelling to seismic refraction data along a 350 km along-strike profile in the Coast Belt of the southern Canadian Cordillera to determine crust and upper mantle P-wave velocity structure. The crustal model features a thin (0.5–3.0 km) near-surface layer with an average velocity of 4.4 km/s, and upper-, middle-, and lower-crustal strata which are each approximately 10 km thick and have velocities ranging from 6.2 to 6.7 km/s. The Moho appears as a 2 km thick transitional layer with an average depth of 35 km and overlies an upper mantle with a poorly constrained velocity of over 8 km/s. Other interpretations indicate that this profile lies within a collision zone between the Insular superterrane and the ancient North American margin and propose two collision-zone models: (i) crustal delamination, whereby the Insular superterrane was displaced along east-vergent faults over the terranes below; and (ii) crustal wedging, in which interfingering of Insular rocks occurs throughout the crust. The latter model involves thick layers of Insular material beneath the Coast Belt profile, but crustal velocities indicate predominantly non-Insular material, thereby favoring the crustal delamination model. Comparisons of the velocity model with data from the proximate reflection lines show that the top of the Moho transition zone corresponds with the reflection Moho. Comparisons with other studies suggest that likely sources for intracrustal wide-angle reflections observed in the refraction data are structural features, lithological contrasts, and transition zones surrounding a region of layered porosity in the crust.


2021 ◽  
Vol 13 (13) ◽  
pp. 2449
Author(s):  
Huiyan Shi ◽  
Tonglin Li ◽  
Rui Sun ◽  
Gongbo Zhang ◽  
Rongzhe Zhang ◽  
...  

In this paper, we present a high resolution 3-D tomographic model of the upper mantle obtained from a large number of teleseismic travel time data from the ISC in the central Philippines. There are 2921 teleseismic events and 32,224 useful relative travel time residuals picked to compute the velocity structure in the upper mantle, which was recorded by 87 receivers and satisfied the requirements of teleseismic tomography. Crustal correction was conducted to these data before inversion. The fast-marching method (FMM) and a subspace method were adopted in the forward step and inversion step, respectively. The present tomographic model clearly images steeply subducting high velocity anomalies along the Manila trench in the South China Sea (SCS), which reveals a gradual changing of the subduction angle and a gradual shallowing of the subduction depth from the north to the south. It is speculated that the change in its subduction depth and angle indicates the cessation of the SCS spreading from the north to the south, which also implies that the northern part of the SCS opened earlier than the southern part. Subduction of the Philippine Sea (PS) plate is exhibited between 14° N and 9° N, with its subduction direction changing from westward to eastward near 13° N. In the range of 11° N–9° N, the subduction of the Sulu Sea (SS) lies on the west side of PS plate. It is notable that obvious high velocity anomalies are imaged in the mantle transition zone (MTZ) between 14° N and 9° N, which are identified as the proto-SCS (PSCS) slabs and paleo-Pacific (PP) plate. It extends the location of the paleo-suture of PSCS-PP eastward from Borneo to the Philippines, which should be considered in studying the mechanism of the SCS and the tectonic evolution in SE Asia.


2021 ◽  
Author(s):  
Gregor Rajh ◽  
Josip Stipčević ◽  
Mladen Živčić ◽  
Marijan Herak ◽  
Andrej Gosar

<p>The investigated area of the NW Dinarides is bordered by the Adriatic foreland, the Southern Alps, and the Pannonian basin at the NE corner of the Adriatic Sea. Its complex crustal structure is the result of interactions among different tectonic units. Despite numerous seismic studies taking place in this region, there still exists a need for a detailed, smaller scale study focusing mainly on the brittle part of the Earth's crust. Therefore, we decided to investigate the velocity structure of the crust using concepts of local earthquake tomography (LET) and minimum 1-D velocity model. Here, we present the results of the 1-D velocity modeling and the catalogue of the relocated seismicity. A minimum 1-D velocity model is computed by simultaneous inversion for hypocentral and velocity parameters together with seismic station corrections and represents the best fit to the observed arrival times.</p><p>We used 15,579 routinely picked P wave arrival times from 631 well-located earthquakes that occurred in Slovenia and in its immediate surroundings (mainly NW Croatia). Various initial 1-D velocity models, differing in velocity and layering, were used as input for velocity inversion in the VELEST program. We also varied several inversion parameters during the inversion runs. Most of the computed 1-D velocity models converged to a stable solution in the depth range between 0 and 25 km. We evaluated the inversion results using rigorous testing procedures and selected two best performing velocity models. Each of these models will be used independently as the initial model in the simultaneous hypocenter-velocity inversion for a 3-D velocity structure in LET. Based on the results of the 1-D velocity modeling, seismicity distribution, and tectonics, we divided the study area into three parts, redefined the earthquake-station geometry, and performed the inversion for each part separately. This way, we gained a better insight into the shallow velocity structure of each subregion and were able to demonstrate the differences among them.</p><p>Besides general structural implications and a potential to improve the results of LET, the new 1-D velocity models along with station corrections can also be used in fast routine earthquake location and to detect systematic travel time errors in seismological bulletins, as already shown by some studies using similar methods.</p>


2011 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Sri Widiyantoro ◽  
Jeremy D. Pesicek ◽  
Clifford H. Thurber

Seismic tomography with a non-linear approach has been successfully applied to image the P-wave velocity structure beneath the Banda arc in detail. Nearly one million compressional phases including the surfacereflected depth phases pP and pwP from events within the Indonesian region have been used. The depth phases have been incorporated in order to improve the sampling of the uppermantle structure, particularly below the Banda Sea in the back-arc regions. For the model parameterization, we have combined a highresolution regional inversion with a low-resolution global inversion to allow detailed images of slab structures within the study region and to minimize the mapping of distant aspherical mantle structure into the volume under study. In this paper, we focus our discussion on the upper mantle and transition zone structure beneath the curved Banda arc. The tomographic images confirm previous observations of the twisting of the slab in the upper mantle, forming a spoon-shaped structure beneath the Banda arc. A slab lying flat on the 660 km discontinuity beneath the Banda Sea is also well imaged. Further interpretations of the resulting tomograms and seismicity data support the scenario of the Banda arc subduction rollback.


2020 ◽  
Author(s):  
Biao Guo ◽  
Jiuhui Chen ◽  
Xiaoshu Li ◽  
Shuncheng Li

<p>The Ordos Block located in the center of China mainland, which is one of the oldest and most stable cratons in Asia. It is contiguous to the Yinshan Block, the North China Craton, Alex Block, Yangze Block, and Northeast Tibet. Numerous geologic and geophysical studies engaged in the mechanics of the Ordos Block deformation and evolution, but the detail structure and deformation style of the Ordos Block remains uncertain due to poor geophysical data coverage. During 2013 and 2018, China Earthquake Administration developed XMLY Seismic Array in Ordos Block and adjacent area, which operated more than 1000 broadband seismic stations with an average station spacing of 35km. Using the P-wave Travel time data recorded by the array and multi-scale seismic traveltime tomography technique, we obtained a high-resolution P-wave velocity structure beneath Ordos Block. The seismic tomography algorithm employs sparsity constrains on the wavelet representation velocity model via the L1-norm regularization. This algorithm can efficiently deal with the uneven-sampled volume, and give multi-scale images of the model. Our preliminary results can be summarized as follows: 1, the crustal and upper mantle P-wave velocity structure is strongly inhomogeneous and consistent with the surface geological setting; 2, significant low-velocity anomalies exist beneath the northwestern margin of Ordos Block, which suggested that there exist upper mantle upwelling; 3, There have obvious boundary between Alex and Ordos Block along 104ºE at upper mantle;  4, Along 38ºN tectonic line, there exist different structure between south part and north part of Ordos upper mantle, the south part of Ordos show high-velocity feature and the upper mantle show low-velocity anomalies in north part of Ordos Block. This feature can be interpreted that the two parts of the Ordos Block undergone different Tectonic evolution processes.</p>


2015 ◽  
Vol 7 (3) ◽  
pp. 2527-2562 ◽  
Author(s):  
H. Silvennoinen ◽  
E. Kozlovskaya ◽  
E. Kissling

Abstract. The POLENET/LAPNET broadband seismic array was deployed in northern Fennoscandia (Finland, Sweden, Norway, and Russia) during the third International Polar Year 2007–2009. The array consisted of roughly 60 seismic stations. In our study we estimate the 3-D architecture of the upper mantle beneath the northern Fennoscandian shield using high-resolution teleseismic P-wave tomography. For this purpose 111 clearly recorded teleseismic events were selected and the data from the stations handpicked and analysed. Our study reveals a highly heterogeneous lithospheric mantle beneath the northern Fennoscandian shield though without any large high P-wave velocity area that may indicate presence of thick depleted lithospheric "keel". The most significant feature seen in the velocity model is a large elongated negative velocity anomaly (up to −3.5 %) in depth range 100–150 km in the central part of our study area that can be followed down to a depth of 200 km in some local areas. This low-velocity area separates three high-velocity regions corresponding to the cratons and it extends to greater depth below the Karelian craton.


1991 ◽  
Vol 81 (2) ◽  
pp. 508-523
Author(s):  
Jim Mori

Abstract Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley, California. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequences appear to have similar depth distribution in the range of 4 to 10 km.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B41-B57 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Microseismicity is recorded during an underground mine development by a network of seven boreholes. After an initial preprocessing, 488 events are identified with a minimum of 12 P-wave arrival-time picks per event. We have developed a three-step approach for P-wave passive seismic tomography: (1) a probabilistic grid search algorithm for locating the events, (2) joint inversion for a 1D velocity model and event locations using absolute arrival times, and (3) double-difference tomography using reliable differential arrival times obtained from waveform crosscorrelation. The originally diffusive microseismic-event cloud tightens after tomography between depths of 0.45 and 0.5 km toward the center of the tunnel network. The geometry of the event clusters suggests occurrence on a planar geologic fault. The best-fitting plane has a strike of 164.7° north and dip angle of 55.0° toward the west. The study region has known faults striking in the north-northwest–south-southeast direction with a dip angle of 60°, but the relocated event clusters do not fall along any mapped fault. Based on the cluster geometry and the waveform similarity, we hypothesize that the microseismic events occur due to slips along an unmapped fault facilitated by the mining activity. The 3D velocity model we obtained from double-difference tomography indicates lateral velocity contrasts between depths of 0.4 and 0.5 km. We interpret the lateral velocity contrasts in terms of the altered rock types due to ore deposition. The known geotechnical zones in the mine indicate a good correlation with the inverted velocities. Thus, we conclude that passive seismic tomography using microseismic data could provide information beyond the excavation damaged zones and can act as an effective tool to complement geotechnical evaluations.


Sign in / Sign up

Export Citation Format

Share Document