scholarly journals Spectral Analysis of Translation-Invariant Mechanical Systems with Application to Structural Vibrations and Stability

2021 ◽  
Vol 15 ◽  
pp. 246-253
Author(s):  
Nikolay V. Banichuk ◽  
Alexander A. Barsuk ◽  
Svetlana Yu. Ivanova ◽  
Tero T. Tuovinen

The paper considers the problems and the methods of spectral analysis of elastic structural systems. The presented consideration focuses on the translation-invariant spectral formulations. Some periodic representations and the spectral decomposition are derived. In the context of general analysis of translation-invariant systems, the particular problems of structural vibration and stability are solved in analytical form.

10.14311/968 ◽  
2007 ◽  
Vol 47 (4-5) ◽  
Author(s):  
P. Švec ◽  
V. Jandák

This paper deals with the effect of secondary actuator positioning in an active structural acoustics control (ASAC) experiment. The ASAC approach is based on minimizing the sound radiation from structures to the far field by controlling the structural vibrations. In this article a rectangular steel plate structure was assumed with one secondary actuator attached to it. As a secondary actuator, a specially designed piezoelectric stripe actuator was used. We studied the effect of the position of the actuator on the pattern and on the radiated sound field of the structural vibration, with and without active control. The total radiated power was also measured. The experimental data was confronted with the results obtained by a numerical solution of the mathematical model used. For the solution, the finite element method in the ANSYS software package was used. 


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Seon Il Ha ◽  
Gil Ho Yoon

Abstract This research presents a pendulum dynamic vibration absorber (PDVA) consisting of a spring and a mass in order to attenuate structural vibrations at two frequencies of hosting structure. It is a convention to attach several dynamic absorbers to hosting structure for the sake of the attenuations of structural vibrations at multiple frequencies with enlarged bandwidth and often it increases the total mass and the installation cost. Therefore, the reduction of the number of vibration absorbers for multiple excitation frequencies is an important issue from an engineering point of view. To resolve these difficulties, this study proposes to adopt the vibration absorber framework of the spring-mass vibration as well as the pendulum vibration simultaneously with the present PDVA system. It is composed of a spring and a mass but being allowed to swing circumferentially, the structural vibrations at the two resonance frequencies, i.e., the square root of stiffness over mass and the square root of a length over gravidity, can be simultaneously attenuated. As the length of the spring of the present PDVA is varied, the effective ranges for the pendulum dynamic vibration absorber become widen. To prove the concept of the present PDVA, this research conducts several numerical simulations and experiments.


Author(s):  
Xuping Zhang ◽  
James K. Mills ◽  
William L. Cleghorn

This paper addresses the control of structural vibrations of a 3-PRR parallel manipulator with three flexible intermediate links, bonded with multiple lead zirconate titanate (PZT) actuators and sensors. Flexible intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions. A PZT actuator controller is designed based on strain rate feed control (SRF). Control moments from PZT actuators are transformed to force vectors in modal space, and are incorporated in the dynamic model of the manipulator. The dynamic equations are developed based on the assumed mode method for the flexible parallel manipulator with multiple PZT actuator and sensor patches. Numerical simulation is performed and the results indicate that the proposed active vibration control strategy is effective. Frequency spectra analyses of structural vibrations further illustrate that deformations from structural vibration of flexible links are suppressed to a significant extent when the proposed vibration control strategy is employed, while the deflections caused by inertial and coupling forces are not reduced.


Author(s):  
V. V. Anh ◽  
K. E. Lunney

AbstractThis paper considers a large class of non-stationary random fields which have fractal characteristics and may exhibit long-range dependence. Its motivation comes from a Lipschitz-Holder-type condition in the spectral domain.The paper develops a spectral theory for the random fields, including a spectral decomposition, a covariance representation and a fractal index. From the covariance representation, the covariance function and spectral density of these fields are defined. These concepts are useful in multiscaling analysis of random fields with long-range dependence.


Robotica ◽  
2008 ◽  
Vol 26 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Xuping Zhang ◽  
James K. Mills ◽  
William L. Cleghorn

SUMMARYThis paper addresses the dynamic simulation and control of structural vibrations of a 3-PRR parallel manipulator with three flexible intermediate links, to which are bonded lead zirconate titanate (PZT) actuators and sensors. Flexible intermediate links are modelled as Euler–Bernoulli beams with pinned-pinned boundary conditions. A PZT actuator controller is designed based on strain rate feedback (SRF) control. Control moments from PZT actuators are transformed to force vectors in modal space and are incorporated in the dynamic model of the manipulator. The dynamic equations are developed based on the assumed mode method for the flexible parallel manipulator with multiple PZT actuator and sensor patches. Numerical simulation is performed and the results indicate that the proposed active vibration control strategy is effective. Spectral analyses of structural vibrations further illustrate that deformations from structural vibration of flexible links are suppressed to a significant extent when the proposed vibration control strategy is employed, while the deflections caused by inertial and coupling forces are not reduced.


2000 ◽  
Vol 7 (2) ◽  
pp. 81-90 ◽  
Author(s):  
A. Baz ◽  
S. Poh

A new class of surface damping treatment is proposed to provide effective means for attenuating undesirable structural vibrations. The proposed treatment relies in its operation on the use of smart damping treatments which consist of integrated arrays of constrained visco-elastic damping layers that are controlled passively by a specially arranged network of permanent magnets. The interaction between the magnets and the visco-elastic layers aims at enhancing the energy dissipation characteristics of the damping treatments. In this manner, it would be possible to manufacture structures that are light in weight which are also capable of meeting strict constraints on structural vibration when subjected to unavoidable disturbances.Emphasis is placed here on introducing the concept and the basic performance characteristics of this new class of smart Magnetic Constrained Layer Damping (MCLD) treatments. Comparisons are also presented with conventional Passive Constrained Layer Damping (PCLD) in order to determine the merits and limitation of the MCLD treatments.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
L. Gaul ◽  
J. Becker

Reduction of structural vibrations is of major interest in mechanical engineering for lowering sound emission of vibrating structures, improving accuracy of machines, and increasing structure durability. Besides optimization of the mechanical design or various types of passive damping treatments, active structural vibration control concepts are efficient means to reduce unwanted vibrations. In this contribution, two different semiactive control concepts for vibration reduction are proposed that adapt to the normal force of attached friction dampers. Thereby, semiactive control concepts generally possess the advantage over active control in that the closed loop is intrinsically stable and that less energy is required for the actuation than in active control. In the chosen experimental implementation, a piezoelectric stack actuator is used to apply adjustable normal forces between a structure and an attached friction damper. Simulation and experimental results of a benchmark structure with passive and semiactively controlled friction dampers are compared for stationary narrowband excitation. For simulations of the control performance, transient simulations must be employed to predict the achieved vibration damping. It is well known that transient simulation of systems with friction and normal contact requires excessive computational power due to the nonlinear constitutive laws and the high contact stiffnesses involved. However, commercial finite-element codes do not allow simulating feedback control in a general way. As a remedy, a special simulation framework is developed which allows efficiently modeling interfaces with friction and normal contact by appropriate constitutive laws which are implemented by contact elements in a finite-element model. Furthermore, special model reduction techniques using a substructuring approach are employed for faster simulation.


1972 ◽  
Vol 94 (3) ◽  
pp. 920-924 ◽  
Author(s):  
N. C. Lind ◽  
P. K. Fung

A method is described for the analysis of structural systems containing flexible joints. The formalism of mechanical systems theory is employed to show that there always exists at least one rigid-jointed system equivalent to a system with flexible joints. In practice, the flexibility components of a joint are obtained experimentally; the prerequisite transformations are described. The analysis is illustrated by an example, showing that joint flexibility may be a significant factor in the stress analysis of a piping network. It is also shown that the equivalent rigid-jointed system cannot be given a physical representation. Finally, the best physically realizable approximation is given for a tee or a wye joint.


Author(s):  
Hasan Imani ◽  
Madjid Abbaspour ◽  
Mohammad Reza Tabeshpour ◽  
Madjid Karimirad

Floating wind turbines are subjected to highly dynamic and complicated environmental conditions leading to significant platform motions and structural vibrations during operation and survival conditions. These motions and vibrations alter the induced loading characteristics; and consequently, affect the dynamic behavior of the system. In order to better understand the influence of such motions and structural vibrations, herein elastic structural disturbance of tower, on the system behavior, the spectral and statistical characteristics of a floating wind turbine dynamic responses under operational and survival conditions are fully explored using a fully coupled aero-hydro-servo-multi-rigid-flexible-body model. The spectral comparison results showed the important role of aerodynamic damping in reducing the high-frequency resonant responses in operational conditions. These analyses also revealed the effects of tower elasticity in shifting and amplifying high-frequency resonant responses. The statistical comparison results showed that the mean values of the responses are dominated by wind loads and the maximum and standard deviations of the responses are mainly induced by the combination of support platform motions and wave loads. It was also shown that elastic structural deformation of tower enlarges the statistical characteristics of the responses, especially when the system is subjected to both wind and wave loadings.


Sign in / Sign up

Export Citation Format

Share Document