scholarly journals Construction of Evolutionary Mathematical Model of Hierarchical Network Topology

Author(s):  
Min Yang

In order to solve the problem that the traditional hierarchical network topology evolution mathematical model has low accuracy in describing the dynamic behavior of network, the design of hierarchical network topology evolution mathematical model is proposed. This paper analyzes the hierarchical network, establishes the effectiveness index of topology, formulates the strategy of topology reconstruction, realizes the evolution of hierarchical network topology, and completes the design of mathematical model. The experimental results show that the accuracy of the designed mathematical model of hierarchical network topology evolution can reach 94%, and the effect is good in practical application.

SIMULATION ◽  
1967 ◽  
Vol 8 (4) ◽  
pp. 209-214 ◽  
Author(s):  
M.W. Wambsganss ◽  
Donald Coates ◽  
Raymond Cohen

The simulation of high-speed reciprocating refrigeration compressors was motivated by the needs of design engi neers. In this paper a mathematical model describing the dynamic behavior of a reciprocating compressor is pre sented. The model is semianalytic in that two types of empirical factors are required to relate phenomena not yet analytically predictable. One type is obtained from steady- state tests and the other by trial and error based on com parison with experimental results. Both analog and digital computers were considered as means of simulating the model. Due to nonlinearities in the model, the digital com puter, using Fortran IV, was selected. To evaluate the sim ulation, a one-quarter horsepower 3600-rpm stock com pressor was modified and used as a laboratory vehicle. A typical correlation between the computer simulation and experimental results is given. In general, good correlation was achieved.


2016 ◽  
Vol 822 ◽  
pp. 36-43
Author(s):  
Dumitru Neagoe ◽  
Dumitru Bolcu ◽  
Loreta Simniceanu ◽  
Mario Trotea

In this paper the authors present the results of theoretical and experimental research in order to optimize suspension rigidity in case of Daewoo Nubira vehicle. The paper presents the mathematical model obtained by assimilating car with a dynamic system with 5 rigid solids with elastic and viscous linking between them. Theoretical results obtained based on this model and the experimental results are presented, and it is presented a solution to optimize suspension in order to remove the negative effects observed driving on gravel runways or damaged runaways. Theoretical results, compared with the experimental ones, allow us to say that it is possible to optimize suspension by analyzing specific parameters equivalent mathematical model.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Venu Vinod Ananthula ◽  
Venkat Reddy Goli ◽  
Neelima Murapaka

The aim of this work is to simulate the dynamic behavior of a phenol biodegradation process in a fluidized bed bioreactor (FBR). Pseudomonas putida is used for the biodegradation of phenol. A mathematical model was developed to describe the dynamic behavior of the biodegradation process. The model equations describing the process have been solved, and the rate of biodegradation and the biofilm thickness at different points of time have been determined. The mathematical model has been directly mapped onto the network architecture. The network is used to find an error function. Minimization of error function with respect to the network parameters (weights and biases) has been considered as training of the network. A real-coded genetic algorithm has been used for training the network in an unsupervised manner. The system is tested for two different inlet concentrations of feed. The results obtained are then compared with the experimental results. It is found that there is a good agreement between the experimental results and the results obtained from the model.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


2012 ◽  
Vol 496 ◽  
pp. 306-309 ◽  
Author(s):  
Yan Ping Shi ◽  
Shu Hua Fan

A new non-contact sensor with three magnetic pole based on magnetoelastic effect was designed, and its operation principle and mathematical model of induced voltage output were given. The output characteristic of the sensor affected by field current intensity, frequency, and the gap between the probe of the sensor and the surface of the material tested was analyzed by testing. The calculation result based on the output model found by the paper accord basically with the test result. The results of the test have showed that the measuring precision and sensitivity of the sensor can meet the demands of the general practical application.


2001 ◽  
Author(s):  
Som Chattopadhyay

Abstract Positioning accuracy within the range of nanometers is required for high precision machining applications. The implementation of such a range is difficult through the slides because of (a) irregular nature of friction at the slider-guideway interface, and (b) complex motion characteristic at very low speeds. The complexity arises due to the local deformation at the interface prior to breakaway, which is known as microdynamics. In this work prior experimental results exhibiting microdynamics have been appraised, and mathematical model developed to understand this behavior.


2011 ◽  
Vol 383-390 ◽  
pp. 5211-5215
Author(s):  
Yin Lin Li ◽  
Zhong Hua Huang ◽  
Kai Bo Hu

A novel refractometer based on photoelectric sensor technology and differential method is proposed. Sensing principle and mathematical model are introduced; structure and key parameters of sensing probe are designed through detail calculation. Theoretical solution shows resolution reaches order of 10-5. Preliminary experiments verify the feasibility of the design, experimental results show stability error better than ±1.02×10-4, error caused by temperature is 6.65×10-6/°C.


Sign in / Sign up

Export Citation Format

Share Document