scholarly journals EEG Dipole Source Localization using Deep Neural Network

Author(s):  
Zeng Hui ◽  
Li Ying ◽  
Wang Lingyue ◽  
Yin Ning ◽  
Yang Shuo

Electroencephalography (EEG) inverse problem is a typical inverse problem, in which the electrical activity within the brain is reconstructed based on EEG data collected from the scalp electrodes. In this paper, the four-layer concentric head model is used for simulation firstly, four deep neural network models including a multilayer perceptron (MLP) model and three convolutional neural networks (CNNs) are adopted to solve EEG inverse problem based on equal current dipole (ECD) model. In the simulations, 100,000 samples are generated randomly, of which 60% are used for network training and 20% are used for cross-validation. Eventually, the generalization performance of the model using the optimal function is measured by the errors in the rest 20% testing set. The experimental results show that the absolute error, relative error, mean positioning error and standard deviation of the four models are extremely low. The CNN with 6 convolutional layers and 3 pooling layers (CNN-3) is the best model. Its absolute error is about 0.015, its relative error is about 0.005, and its dipole position error is 0.040±0.029 cm. Furthermore, we use CNN-3 for source localization of the real EEG data in Working Memory. The results are in accord with physiological experience. The deep neural network method in our study needs fewer calculation parameters, takes less time, and has better positioning results.

2019 ◽  
Vol 5 (1) ◽  
pp. 361-363
Author(s):  
Fars Samann ◽  
Andreas Rausch ◽  
Thomas Schanze

AbstractIn biomedical engineering, dipole source localization is commonly used to identify brain activities from scalp recorded potentials, which is known as inverse problem of electroencephalography (EEG) source localization. However, this problem is fundamental in biomedical engineering, medicine and neuroscience. The EEG inverse problem is non-linear, in addition, it is ill-posed and the solver can be unstable, i.e. the solution is non-unique and it is highly sensitive to small changes of the measured signal (noise). For solving the EEG inverse problem iterative methods, like Levenberg-Marquardt algorithm, are usually considered. However, these techniques require good initial values and many electrodes N, since a large redundancy supports the finding of the right solution. Therefore, in this paper, a hybrid method of linear and non-linear modelling and least squares approach are proposed to overcome of these problems: the solutions calculated by means of a linear approximation of EEG inverse problems serve as initial values for solving the original non-linear model. In addition, independent component analysis (ICA) is combined with the proposed hybrid least squares method to separate different dipole sources from multiple EEG signals. The performance of the hybrid least squares method with and without ICA is measured in term of root mean square error. The simulation results show that the proposed method can estimate the location of dipole source with acceptable accuracy under high noise condition and small N comparing with linear least squares method considering larger N. Finally, it should be mentioned that the proposed method promises advantages in finding solutions of the EEG inverse problem effectively.


Author(s):  
Lukas Hecker ◽  
Rebekka Rupprecht ◽  
Ludger Tebartz van Elst ◽  
Juergen Kornmeier

AbstractEEG and MEG are well-established non-invasive methods in neuroscientific research and clinical diagnostics. Both methods provide a high temporal but low spatial resolution of brain activity. In order to gain insight about the spatial dynamics of the M/EEG one has to solve the inverse problem, which means that more than one configuration of neural sources can evoke one and the same distribution of EEG activity on the scalp. Artificial neural networks have been previously used successfully to find either one or two dipoles sources. These approaches, however, have never solved the inverse problem in a distributed dipole model with more than two dipole sources. We present ConvDip, a novel convolutional neural network (CNN) architecture that solves the EEG inverse problem in a distributed dipole model based on simulated EEG data. We show that (1) ConvDip learned to produce inverse solutions from a single time point of EEG data and (2) outperforms state-of-the-art methods (eLORETA and LCMV beamforming) on all focused performance measures. (3) It is more flexible when dealing with varying number of sources, produces less ghost sources and misses less real sources than the comparison methods. (4) It produces plausible inverse solutions for real-world EEG recordings and needs less than 40 ms for a single forward pass. Our results qualify ConvDip as an efficient and easy-to-apply novel method for source localization in EEG and MEG data, with high relevance for clinical applications, e.g. in epileptology and real time applications.


2020 ◽  
Author(s):  
Chiou-Jye Huang ◽  
Yamin Shen ◽  
Ping-Huan Kuo ◽  
Yung-Hsiang Chen

AbstractThe coronavirus disease 2019 pandemic continues as of March 26 and spread to Europe on approximately February 24. A report from April 29 revealed 1.26 million confirmed cases and 125 928 deaths in Europe. This study proposed a novel deep neural network framework, COVID-19Net, which parallelly combines a convolutional neural network (CNN) and bidirectional gated recurrent units (GRUs). Three European countries with severe outbreaks were studied—Germany, Italy, and Spain—to extract spatiotemporal feature and predict the number of confirmed cases. The prediction results acquired from COVID-19Net were compared to those obtained using a CNN, GRU, and CNN-GRU. The mean absolute error, mean absolute percentage error, and root mean square error, which are commonly used model assessment indices, were used to compare the accuracy of the models. The results verified that COVID-19Net was notably more accurate than the other models. The mean absolute percentage error generated by COVID-19Net was 1.447 for Germany, 1.801 for Italy, and 2.828 for Spain, which were considerably lower than those of the other models. This indicated that the proposed framework can accurately predict the accumulated number of confirmed cases in the three countries and serve as a crucial reference for devising public health strategies.


2021 ◽  
Author(s):  
JamesChan

This paper proposes a solution to predict the capacity of the lithium-ion battery's capacity division process using deep learning methods. This solution extracts the physical observation records of part of the process steps from the chemical conversion and volumetric processes as features, and trains a Deep Neural Network (DNN) to achieve accurate prediction of battery capacity. According to the test, the average percentage absolute error (Mean Absolute Percentage Error, MAPE) of the battery capacity predicted by this model is only 0.78% compared with the true value. Combining this model with the production line can greatly reduce production time and energy consumption, and reduce battery production costs.


2020 ◽  
Vol 27 ◽  
pp. 1485-1489 ◽  
Author(s):  
Jun Qi ◽  
Jun Du ◽  
Sabato Marco Siniscalchi ◽  
Xiaoli Ma ◽  
Chin-Hui Lee

2020 ◽  
Vol 10 (19) ◽  
pp. 6926
Author(s):  
Anna Hoła ◽  
Łukasz Sadowski

The paper presents the results of the verification of the neural method for assessing the humidity of saline brick walls. The method was previously developed by the authors and can be useful for the nondestructive assessment of the humidity of walls in historic buildings when destructive intervention during testing is not possible due to conservation restrictions. However, before being implemented in construction practice, this method requires validation by verification on other historic buildings, which to date has not been done. The paper presents the results of such verification, which has never been carried out before, and thus extends the scope of knowledge related to the issue. For experimental verification of the artificial neural network (ANN), the results of moisture tests of two selected historic buildings, other than those used for ANN learning and testing processes, were used. An artificial unidirectional multilayer neural network with backward error propagation and the algorithm for learning conjugate gradient (CG) was found to be useful for this purpose. The obtained satisfactory value of the linear correlation coefficient R of 0.807 and low average absolute error |Δf| of 1.16% confirms this statement. The values of average relative error |RE| of 19.02%, which were obtained in this research, were not very high for an in-situ study. Moreover, the relative error values |RE| were mostly in the range of 15% to 25%.


2021 ◽  
Vol 15 ◽  
Author(s):  
Takayoshi Moridera ◽  
Essam A. Rashed ◽  
Shogo Mizutani ◽  
Akimasa Hirata

Electroencephalogram (EEG) is a method to monitor electrophysiological activity on the scalp, which represents the macroscopic activity of the brain. However, it is challenging to identify EEG source regions inside the brain based on data measured by a scalp-attached network of electrodes. The accuracy of EEG source localization significantly depends on the type of head modeling and inverse problem solver. In this study, we adopted different models with a resolution of 0.5 mm to account for thin tissues/fluids, such as the cerebrospinal fluid (CSF) and dura. In particular, a spatially dependent conductivity (segmentation-free) model created using deep learning was developed and used for more realist representation of electrical conductivity. We then adopted a multi-grid-based finite-difference method (FDM) for forward problem analysis and a sparse-based algorithm to solve the inverse problem. This enabled us to perform efficient source localization using high-resolution model with a reasonable computational cost. Results indicated that the abrupt spatial change in conductivity, inherent in conventional segmentation-based head models, may trigger source localization error accumulation. The accurate modeling of the CSF, whose conductivity is the highest in the head, was an important factor affecting localization accuracy. Moreover, computational experiments with different noise levels and electrode setups demonstrate the robustness of the proposed method with segmentation-free head model.


Author(s):  
Chiou-Jye Huang ◽  
Yung-Hsiang Chen ◽  
Yuxuan Ma ◽  
Ping-Huan Kuo

AbstractCOVID-19 is spreading all across the globe. Up until March 23, 2020, the confirmed cases in 173 countries and regions of the globe had surpassed 346,000, and more than 14,700 deaths had resulted. The confirmed cases outside of China had also reached over 81,000, with over 3,200 deaths. In this study, a Convolutional Neural Network (CNN) was proposed to analyze and predict the number of confirmed cases. Several cities with the most confirmed cases in China were the focus of this study, and a COVID-19 forecasting model, based on the CNN deep neural network method, was proposed. To compare the overall efficacies of different algorithms, the indicators of mean absolute error and root mean square error were applied in the experiment of this study. The experiment results indicated that compared with other deep learning methods, the CNN model proposed in this study has the greatest prediction efficacy. The feasibility and practicality of the model in predicting the cumulative number of COVID-19 confirmed cases were also verified in this study.


Sign in / Sign up

Export Citation Format

Share Document