scholarly journals The Influences of Landcover structure on surface urban heat islands: A case study of Ho Chi Minh, Vietnam

2020 ◽  
Vol 61 (2) ◽  
pp. 76-85
Author(s):  
Ha Thu Thi Le ◽  
Nhat Dac Doan ◽  
Lam Thi Huynh ◽  
Thuy Thanh Thi Nguyen ◽  
Hiep Ngoc Thi Nguyen ◽  
...  

Urbanization is taking place at an unprecedented rate around the world, particularly in Vietnam. One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). Understanding the effects of landscape pattern on UHI is crucial for improving the ecology and sustainability of cities. This study investigated how landscape composition and configuration would affect UHI in the District 7, Ho Chi Minh City of Vietnam, based on the analysis of land surface temperature (LST) in relation to the percentage of vegetation, impervious, and water surface. Landsat 8 OLI satellite images acquired on February 14th, 2017 was used to estimate the LST from the thermal channel, while the percentage of vegetation, impervious, and water surface were extracted from multi-spectral channels. Our results indicate that there is a significant difference in LST among the wards in the study area. Impervious surfaces contribute the most to UHI, followed by bare soil, vegetative cover, and water. The research results also show that the structure of urban coverings should reach: 50% of impermeable surfaces and bare land, the remaining 50% are water and vegetation. These results are useful for understanding urban ecology as well as land use planning to minimize the potential environmental impacts of urbanization.

2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


Author(s):  
Дмитрий Владимирович Сарычев ◽  
Ирина Владимировна Попова ◽  
Семен Александрович Куролап

Рассмотрены вопросы мониторинга теплового загрязнения окружающей среды в городах. Представлена методика отбора спектрозональных спутниковых снимков, их обработки и интерпретации полученных результатов. Для оценки городского острова тепла были использованы снимки с космического аппарата Landsat 8 TIRS. На их основе построены карты пространственной структуры острова тепла города Воронежа за летний и зимний периоды. Определены тепловые аномалии и выявлено 11 основных техногенных источников теплового загрязнения в г. Воронеже, установлена их принадлежность к промышленным зонам предприятий, а также к очистным гидротехническим сооружениям. Поверхностные температуры данных источников в среднем были выше фоновых температур приблизительно на 6° зимой и на 15,5° С летом. Синхронно со спутниковой съемкой были проведены наземные контрольные тепловизионные измерения температур основных подстилающих поверхностей в г. Воронеже. Полученные данные показали высокую сходимость космических и наземных измерений, на основании чего сделан вывод о надежности используемых данных дистанционного зондирования Земли в мониторинговых наблюдениях теплового загрязнения городской среды. Результаты работ могут найти применение в городском планировании и медицинской экологии. The study deals with the remote sensing and monitoring of urban heat islands. We present a methodology of multispectral satellite imagery selection and processing. The study bases on the freely available Landsat 8 TIRS data. We used multitemporal thermal band combinations to make maps of the urban heat island of Voronezh (Russia) during summer and winter periods. That let us identify 11 artificial sources of heat in Voronezh. All of them turned out to be allocated within industrial zones of plants and water treatment facilities. Land surface temperatures (LST) of these sources were approximately 6° and 15.5° C above the background temperatures in winter and summer, respectively. To prove the remotely sensed temperatures we conducted ground control measurements of LST of different surface types at the satellite revisit moments. Our results showed a significant correlation between the satellite and ground-based measurements, so the maps we produced in this study should be robust. They are of use in urban planning and medical ecology studies.


Author(s):  
C. A. Alcantara ◽  
J. D. Escoto ◽  
A. C. Blanco ◽  
A. B. Baloloy ◽  
J. A. Santos ◽  
...  

Abstract. Urbanization has played an important part in the development of the society, yet it is accompanied by environmental concerns including the increase of local temperature compared to its immediate surroundings. The latter is known as Urban Heat Islands (UHI). This research aims to model UHI in Quezon City based on Land Surface Temperature (LST) estimated from Landsat 8 data. Geospatial processing and analyses were performed using Google Earth Engine, ArcGIS, GeoDa, and SAGA GIS. Based on Urban Thermal Field Variance Index (UTFVI) and the normalized mean per barangay (village), areas with strong UHI intensities were mapped and characterized. high intensity UHIs are observed mostly in areas with high Normalized Difference Built-up Index (NDBI) like the residential regions while the weak intensity UHIs are noticed in areas with high Normalized Difference Vegetation Index (NDVI) near the La Mesa Reservoir. In the OLS regression model, around 69% of LST variability is explained by Surface Albedo (SA), Sky View Factor (SVF), Surface Area to Volume Ratio (SVR), Solar Radiation (SR), NDBI and NDVI. OLS yield relatively high residuals (RMSE = 1.67) and the residuals are not normally distributed. Since LST is non-stationary, Geographically Weighted Regression (GWR) regression was conducted, proving normally and randomly distributed residuals (average RMSE = 0.26).


2018 ◽  
Vol 10 (12) ◽  
pp. 1965 ◽  
Author(s):  
Nguyen Thanh Hoan ◽  
Yuei-An Liou ◽  
Kim-Anh Nguyen ◽  
Ram Sharma ◽  
Duy-Phien Tran ◽  
...  

Hanoi City of Vietnam changes quickly, especially after its state implemented its Master Plan 2030 for the city’s sustainable development in 2011. Then, a number of environmental issues are brought up in response to the master plan’s implementation. Among the issues, the Urban Heat Island (UHI) effect that tends to cause negative impacts on people’s heath becomes one major problem for exploitation to seek for mitigation solutions. In this paper, we investigate the land surface thermal signatures among different land-use types in Hanoi. The surface UHI (SUHI) that characterizes the consequences of the UHI effect is also studied and quantified. Note that our SUHI is defined as the magnitude of temperature differentials between any two land-use types (a more general way than that typically proposed in the literature), including urban and suburban. Relationships between main land-use types in terms of composition, percentage coverage, surface temperature, and SUHI in inner Hanoi in the recent two years 2016 and 2017, were proposed and examined. High correlations were found between the percentage coverage of the land-use types and the land surface temperature (LST). Then, a regression model for estimating the intensity of SUHI from the Landsat 8 imagery was derived, through analyzing the correlation between land-use composition and LST for the year 2017. The model was validated successfully for the prediction of the SUHI for another hot day in 2016. For example, the transformation of a chosen area of 161 ha (1.61 km2) from vegetation to built-up between two years, 2016 and 2017, can result in enhanced thermal contrast by 3.3 °C. The function of the vegetation to lower the LST in a hot environment is evident. The results of this study suggest that the newly developed model provides an opportunity for urban planners and designers to develop measures for adjusting the LST, and for mitigating the consequent effects of UHIs by managing the land use composition and percentage coverage of the individual land-use type.


2019 ◽  
Vol 11 (3) ◽  
pp. 299 ◽  
Author(s):  
Florent Renard ◽  
Lucille Alonso ◽  
Yasmin Fitts ◽  
Adeline Hadjiosif ◽  
Jacques Comby

Climate change is a global challenge with multiple consequences. One of its impacts is the increase in heatwave frequency and intensity. The risk is higher for populations living in urban areas, where the highest temperatures are generally identified, due to the urban heat island effect. This phenomenon has recently been taken into account by local elected officials. As a result, developers have decided to use solutions in redevelopment projects to combat high temperatures in urban areas. Consequently, the objective is to study the land-surface temperature evolution of six main urban redevelopments in Lyon, France, from 2000 to 2017. Three of them (the Confluence, Kaplan, and Museum sites) were composed of industrial areas that have undergone major transformations and are now tertiary or residential areas. Two sites have been more lightly transformed, particularly by increasing vegetation to reduce heat stress and urban flooding (Dock and Garibaldi Street). Finally, the Groupama Stadium has been built into agricultural and wooded areas. Changes in vegetation cover (NDVI), water (MNDWI), and moisture (NDMI) content, built areas (NDBI) and bare soil (NDBaI) are also monitored. The results show that the Confluence and Kaplan sites were accompanied by a decrease in surface temperature and an increase in vegetation and moisture, whereas the Groupama Stadium displayed a rise in surface temperature and a decrease in vegetation. On the other hand, the Museum, Dock, and Garibaldi sites did not exhibit clear and uniform trends, although an increase in surface temperature was shown in some statistical tests. The disparity of the results shows the necessity to include a significant amount of vegetation during redevelopment operations in order to reduce heat stress.


2020 ◽  
Vol 12 (3) ◽  
pp. 578
Author(s):  
Yuchen Wang ◽  
Yu Zhang ◽  
Nan Ding ◽  
Kai Qin ◽  
Xiaoyan Yang

As an important energy absorption process in the Earth’s surface energy balance, evapotranspiration (ET) from vegetation and bare soil plays an important role in regulating the environmental temperatures. However, little research has been done to explore the cooling effect of ET on the urban heat island (UHI) due to the lack of appropriate remote-sensing-based estimation models for complex urban surface. Here, we apply the modified remote sensing Penman–Monteith (RS-PM) model (also known as the urban RS-PM model), which has provided a new regional ET estimation method with the better accuracy for the urban complex underlying surface. Focusing on the city of Xuzhou in China, ET and land surface temperature (LST) were inversed by using 10 Landsat 8 images during 2014–2018. The impact of ET on LST was then analyzed and quantified through statistical and spatial analyses. The results indicate that: (1) The alleviating effect of ET on the UHI was stronger during the warmest months of the year (May–October) but not during the colder months (November–March); (2) ET had the most significant alleviating effect on the UHI effect in those regions with the highest ET intensities; and (3) in regions with high ET intensities and their surrounding areas (within a radius of 150 m), variation in ET was a key factor for UHI regulation; a 10 W·m−2 increase in ET equated to 0.56 K decrease in LST. These findings provide a new perspective for the improvement of urban thermal comfort, which can be applied to urban management, planning, and natural design.


2021 ◽  
Vol 914 (1) ◽  
pp. 012050
Author(s):  
E M D Rahayu ◽  
S Yusri

Abstract This paper explores the role of Bogor Botanic Gardens (BBG) as a form of Nature-Based Solution (NBS) to mitigate Urban Heat Islands (UHI). Time series analysis of LANDSAT 8 OLI thermal band and Normalized Difference Vegetation Index (NDVI) was done from 2013 to 2020 using Google Earth Engine. Land Surface Temperature (LST) from Bogor and BBG were calculated, compared, and annual UHI areas were derived. The relationship of LST and NDVI were also explored annually to describe the effect of vegetation towards LST with linear regression. Overall, Bogor experiences a decrease of mean LST from 30.67°C and a maximum of 39.14°C in 2013 to 27.07°C and a maximum of 34.35°C in 2020. However, the inside of BBG is cooler with temperature ranging from 28.41°C and a maximum of 35.62°C in 2013 to 24.25°C and a maximum of 29.41°C in 2020. This is an effect of vegetation inside the BBG that regulate microclimate in its surrounding. It can be seen in the negative correlation between NDVI and LST observed with r2 ranging from 0.27 to 0.82. While UHI areas tended to increase from 8220 ha in 2013 to 8926 ha in 2020, BBG consistently acts as an urban cool island in the middle of UHI. Therefore, heat mitigation is proven to be one of the environmental services provided by BBG.


2019 ◽  
Vol 41 (3) ◽  
pp. 201-215 ◽  
Author(s):  
Nguyen Thanh Hoan ◽  
Nguyen Van Dung ◽  
Ho Le Thu ◽  
Hoa Thuy Quynh

It is of utmost importance to understand and monitor the impact of urban heat islands on ecosystems and overall human health in the context of climate change and global warming. This research was conducted in a tropical city, Hanoi, with a major objective of assessing the quantitative relationships between the composition of the main land-cover types and surface urban heat island phenomenon. In this research, we analyzed the correlation between land-cover composition, percentage coverage of the land cover types, and land surface temperature for different moving window sizes or urban land management units. Landsat 8 OLI (Operational Land Imager) satellite data was utilized for preparing land-cover composition datasets in inner Hanoi by employing the unsupervised image clustering method. High-resolution (30m) land surface temperature maps were generated for different days of the years 2016 and 2017 using Landsat 8 TIRS (Thermal Infrared Sensor) images. High correlations were observed between percentage coverage of the land-cover types and land surface temperature considering different window sizes. A new model for estimating the intensity of surface urban heat islands from Landsat 8 imagery is developed, through recursively analyzing the correlation between land-cover composition and land surface temperature at different moving window sizes. This land-cover composition-driven model could predict land surface temperature efficiently not only in the case of different window sizes but also on different days. The newly developed model in this research provides a wonderful opportunity for urban planners and designers to take measures for adjusting land surface temperature and the associated effects of surface urban heat islands by managing the land cover composition and percentage coverage of the individual land-cover types.


2021 ◽  
Vol 4 (4) ◽  
pp. 166-174
Author(s):  
Hosea Kato Mande ◽  
Osayi Deborah Abashiya

Urbanization is a major event in human history and there is no doubt the world is urbanizing rapidly and this is resulting in changes in temperature. This research aims  is to identify changes in land surface temperature (LST)  between  2000 and 2018.  The technique used is the Landsat TM. The result of the land cover classification revealed a +15.93% increase in built-up areas, -27.21% decrease in vegetative cover, +11.19% increase in bare land and +0.09 increase in water bodies between 2000 and 2018. NDVI analysis showed a +0.02 and +0.17 increase in the maximum and minimum range and a +2.16 and -7.76 increase and decrease in maximum and minimum temperature respectively for LST. The finding revealed that the repelling of vegetative cover by built-up is an evidence of rapid urbanization taking place in Kaduna metropolis and a major driver of UHI in Kaduna metropolis. Conclusively, there is a correlation between the various land covers of study i.e built-up, vegetative cover, bare land and water body and LST in Kaduna metropolis between 2000 and 2018. Likewise, urban development has a major impact on urban climate particularly in the increase in land surface temperature which in turn contributes to the development of urban heat. This is true because changes in urban land cover tend to alter the spectral signature and emissivity of the urban surface as observed using remote sensing. The researcher suggests further studies should focus on the assessment of UHI under different land cover and micro-climate in Kaduna metropolis.


Sign in / Sign up

Export Citation Format

Share Document