scholarly journals THE HANDLING OF SUGARCANE TRASH II. EFFECTS OF VARIOUS PRACTICES ON SOIL PROPERTIES

1969 ◽  
Vol 36 (3) ◽  
pp. 246-254
Author(s):  
M. A. Lugo-López ◽  
P. Landrau, Jr. ◽  
G. Samuels

Data are presented here for various soil characteristics on plots where the sugarcane trash had been either burned, buried, or aligned in alternate rows for 6 consecutive years in a plant and 6-ratoon crop cycle. The experiment was established in a Vega Alta silty clay, a rather extensive sugarcane soil of the humid area. After the sixth ratoon crop was harvested, infiltration tests were run in the field and bulk and core samples taken for laboratory analysis. No significant differences were observed between the mean pH and total nitrogen values of soil under the various treatments. The mean organic-matter content of soil from plots where the trash was burned was significantly lower, at the 1-percent level, than that of soil from plots where it was buried or aligned. The C/N ratio was narrow in all cases, but lower under the burned-trash treatment. The mean infiltration rates at the eighth-hour run were 1.40, 2.00, and 2.38 inches per hour for soils that underwent the burned-, aligned-, and buried-trash treatments, respectively, but the differences were not significant. No significant differences were observed between the means of the various physical measurements performed, namely, permeability, quick drainage, maximum saturation, water removed and retained at pF 1.78, bulk density, total porosity, and air porosity. Some trends observed may become significant with continuous accumulation of organic matter in soils undergoing the buried- and aligned-trash treatments. For instance, the permeability of soils from plots where the trash was burned tended to be lowest, and the upper layer of soil from plots where the trash was aligned seemed to retain more water at low tensions than the upper layer of soil from plots treated otherwise.

1979 ◽  
Vol 59 (1) ◽  
pp. 69-78 ◽  
Author(s):  
C. R. DE KIMPE ◽  
G. R. MEHUYS

Clay-rich soils were sampled in the agricultural areas of Montreal, Quebec and Lake St-Jean. Undisrupted soil blocks and bulk samples were taken by horizon in the Ste-Rosalie, Kamouraska and Normandin soil series. Aggregate stability increased with the organic matter content. Bulk density was generally highest in the B horizons. Porosity ranged from 39 to 56% of the total soil volume and the most representative pore diameter varied from 0.706 to 0.048 μm with the largest diameter being found in the Ap horizons. The distribution of porosity among large, medium and small pores in the Ste-Rosalie soil differed from that in the Kamouraska and Normandin soils. In the former, medium pores accounted for only a few percent of total porosity, while the pores were more evenly distributed in the latter soils. Medium pore contents decreased, while small pore contents increased, with increasing clay contents. No significant relationship was observed between large pores and clay percentages. Hydraulic conductivity, with mean values ranging from 3.5 to 109.3 cm/h, was significantly related to the large pore class.


2020 ◽  
pp. 124-132

An evaluation of the productivity of degraded alfisols at Makurdi and Otobi, Nigeria, using artificial desurfacing techniques (ADT) was carried out in 2012 and 2013 cropping seasons. The study was a split-split plot experiment arranged in a Randomized Complete Block Design with three replications. The soil was desurfaced at 0 – 5, 0 – 10, 0 – 15, 0 – 20 cm and the undesurfaced soil, 0 cm (control) depths. The restorative amendments were 9 t ha-1 of poultry dropping as an organic source of manure, N:P2O5:K2O as an inorganic source of manure and zero application as control. Soybean variety TGX 1448-2E and maize variety, Oba super II were used as test crop. Saturated hydraulic conductivity was significantly (P = 0.05) lower at 20 cm (29.08 cm hr-1 ), but did not differ significantly at 0 to 10 cm depths. Soil pH of 5.58 was recorded at 0 cm depth and it decreased to 5.05 at 20 cm depth. Also, organic matter content (1.71 – 1.00 g kg-1 ), total nitrogen (0.12 – 0.08 g kg-1 ) as well as CEC (7.39 – 6.24 cmol kg-1 ) recorded a significant decrease with increase in soil depth from 0 to 20 cm depths. Application of poultry manure increased total porosity and saturated hydraulic conductivity as well as organic matter content across desurfaced depths. Soybean number of leaves was significantly (P = 0.05) reduced at 4, 7, and 10 WAP with increased topsoil removal. The highest grain yield of soybean (1474 kg ha-1 ) was recorded on poultry manure treated plots which were significantly higher (p = 0.05) than other treatments. Application of poultry manure caused 20 % soybean yield reduction at 5 depth, and a 56 % reduction at 20 cm depth.


2020 ◽  
Vol 29 (2) ◽  
pp. 155-163
Author(s):  
Sk Musfiq Us Salehin ◽  
Gazi Md Mohsin ◽  
Tabassum Ferdous ◽  
Jobaed Ragib Zaman ◽  
Md Jashim Uddin ◽  
...  

Twenty soil and leaf samples from 20 orchards of mango (Mangifera indica L.) were collected from different locations of Rajshahi and Satkhira regions to evaluate soil texture, pH, organic matter, available and total nitrogen, phosphorus, potassium and sulfur of soils and the concentration of N and K in mango leaves. The pH of the soil varied from 6.3 - 7.9 and organic matter content varied from 0.72 - 3.60 per cent. The available nitrogen, phosphorus, potassium, and sulfur of the soils ranged from 190 - 510, 39 - 196, 36 - 206 and 25 - 235 mg/kg, respectively. The values of total N, P, K and S were 0.03 - 0.12, 0.022 - 0.210, 0.235 - 0.0.936 and 0.005 - 0.266 per cent, respectively. The dominant soil textural class was silty clay loam. The mean concentration of nitrogen (0.88%) and potassium (0.61%) in the leaf sample was low. The overall fertility status of the soils of Rajshahi and Satkhira regions in relation to mango cultivation is moderate. Dhaka Univ. J. Biol. Sci. 29(2): 155-163, 2020 (July)


2021 ◽  
Author(s):  
Iqbal Ahmad ◽  
Bushra Khan ◽  
Nida Gul ◽  
Muhammad Khan ◽  
Javaid Iqbal ◽  
...  

Abstract Lead (Pb) contamination in soil and subsequent transport in groundwater poses severe threats to the food safety and human health. In current study, the effects of soil organic matter on sorption behavior of Pb onto six agricultural soils were investigated by batch sorption experiments and microscopic characterization. Results indicated that Pb sorption onto agricultural soils was dominated by the soil organic matter content and soil texture. The decrease of organic matter content reduced the sorption capacity of Pb onto agricultural soils. Based on soil texture, the Pb sorption was highest in clay soil and lowest in silt type of soil. The overall Pb sorption was in the order of clay > clay loam > silty clay loam ≈ loam > silt loam > silt. The sorption isotherms of measured aqueous and soil phase Pb concentrations were fit well with the linear sorption model. The organic carbon normalized partition coefficients (Log KOC) ranged from 2.90 to 2.99. Linear partition coefficient (Kd) values were positively correlated with the soil properties, such as clay (R2 =0.90), OC (R2 =0.94) and pH (R2 = 0.45); however, weak correlation was found between Kd and soil sand contents (R2 = 0.12). The leachability model showed potential risk of Pb leaching from silt soil with lowest organic matter content. The findings are of significant importance for understanding potential threats of Pb to the soil ecosystem, groundwater, plants, and humans.


2014 ◽  
Vol 38 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Piero Iori ◽  
Moacir de Souza Dias Junior ◽  
Ayodele Ebenezer Ajayi ◽  
Paulo Tácito Gontijo Guimarães ◽  
Áureo Aparecido Abreu Júnior

In modern agriculture, several factors cause changes in the soil physical properties. The time of establishment of a crop (plantation age) and the slope are examples of factors that moderate the impact of mechanized operations on the soil structure. The objective of this study was to analyze the effect of machinery traffic on the physical properties of a Red-Yellow Latosol under coffee plantations with different ages (2, 7, 18, and 33 years) and slope positions (3, 9 and 15 %). Samples were collected from three positions between coffee rows (lower wheel track, inter-row and upper wheel track) and at two depths (surface layer and sub-surface). Changes in the total porosity, macroporosity, microporosity, organic matter, bulk density, and aggregate stability were investigated. Our results showed that the slope influenced the organic matter content, microporosity and aggregate stability. The soil samples under the inter-row were minimally damaged in their structure, compared to those from under the lower and upper wheel track, while the structure was better preserved under the lower than the upper track. The time since the establishment of the crop, i.e., the plantation age, was the main factor determining the extent of structural degradation in the coffee plantation.


1986 ◽  
Vol 56 (2) ◽  
pp. 407-419 ◽  
Author(s):  
K. Ushida ◽  
J. P. Jouany ◽  
P. Thivend

1. The effect of protozoa on digestion in the rumen was studied using either defaunated or faunated sheep.2. Six wethers, each fitted with rumen and simple duodenal cannulas, were given two isonitrogenous diets containing either lucerne (Medicago sativa) hay (diet L) or sodium hydroxide-treated wheat straw (diet S). The diets were given in eight equal portions per day at 3-h intervals. The mean intake of dry matter, 53 g/kg body-weight0.75per d, was similar for the two diets and each diet had a similar digestible organic matter content. Diet L promoted a large protozoal population and was rich in nitrogen sources of low rumen-degradability, while diet S supported a smaller protozoal population and was rich in rumen-degradable N.3. Digesta flow at the duodenum was estimated by means of a dual-marker technique using chromium-mordanted lucerne hay and polyethylene glycol as markers. The microbial flow at the duodenum was estimated using diaminopimelic acid (DAPA), nucleic-acid purine bases (PB) and35S incorporation simultaneously. The different microbial markers were compared in the defaunated sheep. Protozoal N contribution was estimated in faunated sheep.4. Defaunated sheep had lower rumen ammonia concentrations and molar proportions of butyric acid than faunated sheep, but they had higher molar proportions of propionic acid.5. Rumen organic matter digestion was reduced by defaunation, but this decrease was compensated for by increased intestinal digestion.6. There was a net increase of N flow (approximately 10 g/d) between mouth and duodenum in defaunated sheep. This was explained by increases in both microbial and dietary N flows from the rumen compared with faunated sheep.7. The influence of protozoa on solid- and liquid-phase retention times in the rumen is discussed, as well as the protozoal contribution to microbial N flow in the duodenum of faunated sheep.


Jurnal Solum ◽  
2007 ◽  
Vol 4 (2) ◽  
pp. 81
Author(s):  
Yulnafatmawita Yulnafatmawita ◽  
Asmar Asmar ◽  
Ari Ramayani

A research about soil physical study of four main soils found in West Sumatra was conducted in 2006.  The research was aimed to determine some soil physical properties of four soil which are mostly found in West Sumatra.  The four soil orders assessed were Ultisol from Agricultural Expreriment Station Limau Manis, Oxisol from Lubuk Minturun, Entisol from Tabing Kecamatan Koto Tangah Padang, dan Andisol from Bukik Gompong Kabupaten Solok.  The result showed that at the depth of 0-20 cm soil profile.  Ultisol and Oxisol had finer texture than those of Andisol and Entisol.  Andisol was dominated by silt while Entisol was dominated by sand particles.  Andisol had the lowest bulk density and the highest soil organic matter and total porosity.  Soil Organic matter content of Entisol, Oxisol, and Ultisols was low in criteria.  Plant available water (PAW) was higher in Oxisol, then followed by Andisol, Ultisol, and Entisol.Key words: Organic matter, bulk density, texture, porosity, plant available water


2016 ◽  
Vol 46 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Maria Regina de Miranda Souza ◽  
Paulo Roberto Gomes Pereira ◽  
Ivan de Paiva Barbosa Magalhães ◽  
Maria Aparecida Nogueira Sediyama ◽  
Sanzio Mollica Vidigal ◽  
...  

ABSTRACT Considering that nitrogen is directly related to leaf protein content, the nitrogen fertilization in Pereskia aculeata plants may affect the protein content and increase its nutritional potential. This study aimed at assessing the effect of nitrogen fertilization on mineral, protein and nitrate contents, as well as the yield of P. aculeata leaves. A randomized blocks design was used, with three replications and five treatments, consisting of increasing topdressing nitrogen doses (0-400 kg ha-1), in soil with organic matter content of 4.0 dag kg-1. Three harvests were performed for leaf analysis. No significant effect was observed for mineral and protein content or leaf fresh mass yield. The mean values for mineral composition were: 3.52 dag kg-1 of N, 0.47 dag kg-1 of P, 4.65 dag kg-1 of Ca, 0.71 dag kg-1 of Mg, 0.25 dag kg-1 of S, 36.64 mg kg-1 of Zn and 174.13 mg kg-1 of Fe. The mean content for protein was 21.86 % and the leaf fresh mass yield was 0.971 kg plant-1. K levels decreased from 50 kg ha-1 of N. Nitrate increased linearly with the nitrogen fertilization, reaching a maximum value of 78.2 mg kg-1 of fresh mass, well below the health risk threshold. It was concluded that a soil with high organic matter content does not require nitrogen fertilization. However, doses up to 400 kg ha-1 of nitrogen ensure adequate leaf yield and protein and mineral contents within the desired range for the species, being a food rich in proteins, iron and calcium.


1974 ◽  
Vol 54 (4) ◽  
pp. 369-378 ◽  
Author(s):  
A. J. MACLEAN

In a soil incubation experiment with different rates of Zn, the amounts of Zn extracted with 0.005 M DTPA, 1 M MgCl2, and 0.01 M CaCl2 increased with an increase in the organic matter content of a neutral sandy loam soil and with alfalfa added as an organic amendment. Addition of muck and peat increased the amount of Zn exchanged with 1 M MgCl2 but decreased the amount soluble in 0.01 M CaCl2, whereas addition of clay increased the amount of exchangeable Zn but decreased the amounts in the DTPA and 0.01 M CaCl2 extracts. Liming of an acid sandy loam soil (pH 4.9) to about the neutral point reduced the amounts of extractable Zn markedly. A pretreatment of the soils with phosphate almost invariably increased the amounts of extractable Zn. In a corresponding pot experiment, the highest rate of Zn (250 ppm) reduced the yield of corn slightly, prevented the growth of lettuce, and reduced the yield of alfalfa markedly when these crops were grown successively in the acid soil. The concentration of Zn reached levels of 792 ppm in the corn and 702 ppm in the alfalfa. Addition of 50 ppm Zn to the acid soil restricted the growth of lettuce and increased the concentration of Zn to 523 ppm. Despite discrepancies, the concentrations of Zn in the plants as influenced by soil organic matter, organic amendments and liming were usually in accord with the amounts of Zn extracted from the soils. But the P pretreatment tended to decrease the concentration of Zn in corn and lettuce. The mean weight concentrations of Zn in the three species were correlated significantly with the amounts of Zn extracted with 0.005 M DTPA (r = +0.73), 1 M MgCl2 (r = +0.93) and 0.01 M CaCl2 (r = +0.90).


1969 ◽  
Vol 57 (4) ◽  
pp. 286-293 ◽  
Author(s):  
L. C. Liu ◽  
H. R. Cibes-Viadé

The adsorption capacity of Fluometuron, Prometryne, Sencor, and 2,4-D by 48 local soils was determined spectrophotometrically. The mean adsorptivities of the four herbicides by these soils were as follows: Prometryne 37.0 percent, Sencor 23.0 percent, Fluometuron 22.6 percent, and 2,4-D 12.4 percent. The results indicated that organic matter content was the factor most highly correlated with adsorption of these herbicides by the 48 soils. Cation exchange capacity was found to correlate significantly with adsorption of Fluometuron, Prometryne, and Sencor. Such was not the case with 2,4-D. Correlation between clay content and adsorption of Fluometuron and Sencor was statistically significant. In contrast, no significant correlation was noted between clay content and adsorption of Prometryne and 2,4-D.


Sign in / Sign up

Export Citation Format

Share Document