scholarly journals Deep soil ploughing for afforestation: a review of potential impacts on soil and vegetation

2022 ◽  
Vol 27 (2) ◽  
Author(s):  
Iveta Varnagirytė-Kabašinskienė ◽  
Gediminas Survila ◽  
Kęstutis Armolaitis

Deep ploughing—which inverts, covers, or mixes soil organic layer (forest floor) and surface mineral A horizon into the mineral subsoil, burying the upper soil horizon in deeper layers, and disrupting pedogenic processes—is a debatable topic in forest plantation management. Overall, this review article aimed to identify the impacts of deep ploughing on the properties of forest plantations, adapting experiences from the agricultural sector. This paper examines the main impacts of deep ploughing technology on soil physical, chemical, and biological properties, ground vegetation, and tree aboveground and belowground biomass in afforested former agricultural land. Analysis of the published literature shows that deep ploughing can be used under different climatic and soil conditions, but it induces site-specific changes in soil properties and vegetation. Mechanical site preparation during afforestation and reforestation should follow the requirements of sustainable soil management, in order to avoid negative effects on the environment and biodiversity. Based on this analysis, we suggest key indicators that may be specific to deep ploughing responses in afforested sites and can contribute to risk assessment, aimed at achieving sustainable forest management. To date, most studies on mechanical site preparation for forest plantation have been performed using a few conifer tree species; therefore, it is important to expand empirical studies.

2010 ◽  
Vol 40 (7) ◽  
pp. 1302-1312 ◽  
Author(s):  
Jill F. Johnstone ◽  
F. Stuart Chapin ◽  
Teresa N. Hollingsworth ◽  
Michelle C. Mack ◽  
Vladimir Romanovsky ◽  
...  

In the boreal forests of interior Alaska, feedbacks that link forest soils, fire characteristics, and plant traits have supported stable cycles of forest succession for the past 6000 years. This high resilience of forest stands to fire disturbance is supported by two interrelated feedback cycles: (i) interactions among disturbance regime and plant–soil–microbial feedbacks that regulate soil organic layer thickness and the cycling of energy and materials, and (ii) interactions among soil conditions, plant regeneration traits, and plant effects on the environment that maintain stable cycles of forest community composition. Unusual fire events can disrupt these cycles and trigger a regime shift of forest stands from one stability domain to another (e.g., from conifer to deciduous forest dominance). This may lead to abrupt shifts in forest cover in response to changing climate and fire regime, particularly at sites with intermediate levels of moisture availability where stand-scale feedback cycles are only weakly constrained by environmental conditions. However, the loss of resilience in individual stands may foster resilience at the landscape scale, if changes in the landscape configuration of forest cover types feedback to stabilize regional patterns of fire behavior and climate conditions.


2008 ◽  
Vol 38 (7) ◽  
pp. 2072-2079 ◽  
Author(s):  
Lance W. Lazaruk ◽  
S. Ellen Macdonald ◽  
Gavin Kernaghan

We characterized the ectomycorrhizae (ECM) of planted white spruce ( Picea glauca (Moench) Voss) seedlings as affected by mechanical site preparation (MSP) of clear-cut conifer-dominated boreal mixedwood forest. Relative abundance, richness, and composition of the ECM community were compared among untreated control, mixed, mounded, and scalped site preparation treatments. On >11 000 root tips, we observed 16 ECM morphotypes. Those common to the nursery in which the seedlings were raised were most abundant ( Thelephora americana , Wilcoxina -like (E-strain), Amphinema byssoides , Phialocephala -like (MRA)). Seedlings in the untreated controls had lower abundances of these, but higher abundances of other ECM, which were not present in the nursery of origin but were indigenous to these forest stands. In terms of ECM composition, the “mixed” treatment was most similar to the untreated control, while the “scalped” and “mound” treatments showed significantly different ECM communities than the controls. Our results suggest that MSP may facilitate continued dominance by ECM that establish on seedlings in the nursery while slowing the natural succession towards the natural forest ECM. MSP treatments that leave some surface organic matter relatively intact may impact ECM less than those that remove or bury the organic layer.


2015 ◽  
Vol 91 (02) ◽  
pp. 187-196 ◽  
Author(s):  
Mohammed Henneb ◽  
Osvaldo Valeria ◽  
Nicole J. Fenton ◽  
Nelson Thiffault ◽  
Yves Bergeron

Paludification is the accumulation of partially decomposed organic matter over saturated mineral soils. It reduces tree regeneration and growth, mainly because of low temperatures and high water content in the rooting zone, reduced organic matter decomposition, and hence, low nutrient availability. On the Clay Belt of western Québec and eastern Ontario, forests tend to paludify naturally but this process might be promoted by logging methods. Our objective was to identify which of two commonly used mechanical site preparation (MSP) techniques is best adapted to reduce organic layer thickness (OLT) and generate favourable planting microsites post-harvest in paludified sites. Nine experimental blocks (between 20 ha–61 ha each) were delimited within a 35 km2 forest sector with variable levels of paludification. The forest sector was harvested by careful logging to protect advance growth and soils and subsequently the nine experimental blocks were treated with either forest harrowing, disc trenching (T26) or left as untreated controls (harvesting only) with three replicate blocks per treatment. We measured OLT before and after MSP and determined planting microsite quality within each block. Results revealed significant differences in OLT between MSP treatments and harvesting only. Overall, harrowing was the best technique, as it reduced OLT more than T26 scarification and generated the highest percent of good microsites, except where initial OLT was 44 cm–56 cm. Our results contribute to the successful use of MSP in paludified forests.


1996 ◽  
Vol 76 (4) ◽  
pp. 531-540 ◽  
Author(s):  
M. G. Schmidt ◽  
S. E. Macdonald ◽  
R. L. Rothwell

We examined the impacts of harvesting and mechanical site preparation (MSP) on soil chemical properties of mixed-wood boreal forest sites in west central Alberta. Treatments included: 1) disc trencher, hinge, and trench microsites; 2) ripper plow, hinge, and trench microsites; 3) blading thin (organic layer depth < 2 cm), and thick (organic layer depth > 2 cm) microsites; 4) harvested with no site preparation; and 5) unharvested. Twenty months after harvesting, the forest floor of harvested areas with no MSP (vs. unharvested) had higher carbon:nitrogen ratios lower pH, and lower concentrations of total and mineralizable nitrogen, available phosphorus, and exchangeable bases Fifteen months after MSP, treated areas had either reduced or unchanged concentrations of total nitrogen and carbon, available phosphorus, and mineralizable nitrogen in the surface mineral soil, compared with harvested sites with no site preparation. The MSP-treated areas also had increased or unchanged pH, base saturation, and exchangeable base concentrations. Microsites adjacent to the displaced forest floor (hinge for disc and ripper treatments) or with a thicker organic layer (thick for blading) generally had higher concentrations of total nitrogen and carbon, and mineralizable nitrogen in the surface mineral soil as compared to trench and thin microsites. Key words: Forest soils, mechanical site preparation, harvesting, N, P, mixed-wood boreal forest


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 670 ◽  
Author(s):  
Mohammed Henneb ◽  
Osvaldo Valeria ◽  
Nelson Thiffault ◽  
Nicole J. Fenton ◽  
Yves Bergeron

Low productivity caused by paludification in some parts of the closed black spruce (Picea mariana (Mill.) B.S.P) dominated boreal forest threatens the provision of ecosystem services, including wood fiber production. The accumulation, over time, of organic matter in paludified soils leads to an anaerobic environment that reduces microbial activity, decelerates decomposition of organic matter, and generates nutrient-poor microsites for regeneration. Consequently, it results in significant impacts on site productivity. Considering its ability to disturb the soil, mechanical site preparation (MSP) is viewed as a potential treatment that can help restore productivity of paludified sites following harvesting. We conducted a field experiment to verify if (1) the availability of microsites conducive to reforestation varies with MSP, microtopography (slope and aspect) and initial OLT conditions; (2) the growth of planted seedlings depends on the intensity of mechanical disturbance of the organic layer, type of microsite, planting density, presence of Ericaceae, and the planting position and depth; (3) there are direct and indirect causal relationships between microsites availability after MSP, OLT, microtopography, planting quality and seedlings growth; and (4) if mechanical site preparation and microsite type exposed affect the Ericaceae cover after planting. Our results confirmed that MSP is effective in establishing conditions that permit a productive regeneration cohort on these paludified sites. To ensure successful establishment of plantations on these sites, it is necessary, however, to distinguish between those that are slightly or moderately paludified from those that are highly paludified, as treatment effectiveness of different MSP types depends on organic layer thickness. Our results also show that preference should be given to some microsite types as clay and mixed-substrate microsites for planting to ensure sufficient availability of water and nutrients for seedlings.


2017 ◽  
Vol 47 (7) ◽  
pp. 926-934 ◽  
Author(s):  
Nelson Thiffault ◽  
François Hébert

Sustainable forest management implies successful regeneration following disturbances. Tree regeneration in subarctic ecosystems can, however, be constrained by limitations to seedling establishment related to cold soils, slow decomposition rates, and competition by ericaceous species. We established a field trial at the northern limit of commercial forests in Québec, Canada, to evaluate to what extent mechanical site preparation (MSP) and planting of a nurse N2-fixing species could promote conifer establishment on a site burned in 2007. The experiment comprised four treatments applied in 2010: standard MSP (disc trenching), standard MSP plus planting of Alnus crispa, intensive MSP, with larger furrows than standard MSP, and a control. Main plots were divided and planted in 2011 with Picea mariana (Mill.) Britton, Stearns & Poggenb. or Pinus banksiana Lamb. We monitored seedling survival, growth, nutrition, and microsite over a 3-year period. Results revealed interactions between treatments and planted species. Mechanical site preparation resulted in higher conifer growth relative to the control conditions, and planting Alnus resulted in growth gains similar to those obtained from intensive MSP. We measured competitive interactions between Alnus and the conifers that might eventually cancel out the initial benefits derived from facilitation by planting the nurse species. Longer term monitoring of interspecific interactions is needed to unravel the mechanisms responsible for the facilitative effect and identify the best management practices.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Philipp Grabenweger ◽  
Branislava Lalic ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
Erwin Murer ◽  
...  

A one-dimensional simulation model that simulates daily mean soil temperature on a daily time-step basis, named AGRISOTES (AGRIcultural SOil TEmperature Simulation), is described. It considers ground coverage by biomass or a snow layer and accounts for the freeze/thaw effect of soil water. The model is designed for use on agricultural land with limited (and mostly easily available) input data, for estimating soil temperature spatial patterns, for single sites (as a stand-alone version), or in context with agrometeorological and agronomic models. The calibration and validation of the model are carried out on measured soil temperatures in experimental fields and other measurement sites with various climates, agricultural land uses and soil conditions in Europe. The model validation shows good results, but they are determined strongly by the quality and representativeness of the measured or estimated input parameters to which the model is most sensitive, particularly soil cover dynamics (biomass and snow cover), soil pore volume, soil texture and water content over the soil column.


1998 ◽  
Vol 22 (4) ◽  
pp. 222-226 ◽  
Author(s):  
W. Michael Aust ◽  
James A. Burger ◽  
William H. McKee ◽  
Gregory A. Scheerer ◽  
Mark D. Tippett

Abstract Wet-weather harvesting operations on wet pine fiats can cause soil disturbances that may reduce long-term site productivity. Site preparation and fertilization are often recommended as ameliorative practices for such disturbances, but few studies have actually quantified their effects on restoration. The purposes of this study were to quantify the effects of wet-weather harvest traffic in designated skid trails on soil properties and loblolly pine (Pinus taeda) growth, and to evaluate the ameliorative effects of site preparation. Study sites were established on wet pine flats of the lower Coastal Plain within the Francis Marion National Forest (Berkeley County, SC). Treatments were arranged in a split-split plot within a randomized complete block design. Treatments were two levels of traffic (nontrafficked, trafficked), four levels of mechanical site preparation (none, disking, bedding, disking + bedding), and two levels of fertilization (none, 337 kg /ha of 10-10-10 fertilizer). initially, the trafficking increased soil bulk densities and reduced soil water movement and subsequent growth of loblolly pine (years 1 and 2). Bedding combined with fertilization restored site productivity to non trafficked levels within 4 yr, but disking or fertilization treatments alone were not effective at ameliorating the traffic effects. The effectiveness of the bedding and fertilization treatments for amelioration of traffic effects was probably facilitated by the relatively small area of disturbed skid trails (<10%) found on these sites. Areas having more severe disturbance or higher percentages of disturbance might not be ameliorated as rapidly. South. J. Appl. For. 22(4):222-226.


Sign in / Sign up

Export Citation Format

Share Document