scholarly journals Comparison of Meteorological- and Agriculture-Related Drought Indicators across Ethiopia

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2218 ◽  
Author(s):  
Dawit Teweldebirhan Tsige ◽  
Venkatesh Uddameri ◽  
Farhang. Forghanparast ◽  
Elma Annette. Hernandez ◽  
Stephen. Ekwaro-Osire

Meteorological drought indicators are commonly used for agricultural drought contingency planning in Ethiopia. Agricultural droughts arise due to soil moisture deficits. While these deficits may be caused by meteorological droughts, the timing and duration of agricultural droughts need not coincide with the onset of meteorological droughts due to soil moisture buffering. Similarly, agricultural droughts can persist, even after the cessation of meteorological droughts, due to delayed hydrologic processes. Understanding the relationship between meteorological and agricultural droughts is therefore crucial. An evaluation framework was developed to compare meteorological- and agriculture-related drought indicators using a suite of exploratory and confirmatory tools. Receiver operator characteristics (ROC) was used to understand the covariation of meteorological and agricultural droughts. Comparisons were carried out between SPI-2, SPEI-2, and Palmer Z-index to assess intraseasonal droughts, and between SPI-6, SPEI-6, and PDSI for full-season evaluations. SPI was seen to correlate well with selected agriculture-related drought indicators, but did not explain all the variability noted in them. The correlation between meteorological and agricultural droughts exhibited spatial variability which varied across indicators. SPI is better suited to predict non-agricultural drought states than agricultural drought states. Differences between agricultural and meteorological droughts must be accounted for in order to devise better drought-preparedness planning.

Author(s):  
Dawit Teweldebirhan Tsige ◽  
Venkatesh Uddameri ◽  
Farhang Forghanparast ◽  
Elma Hernandez ◽  
Stephen Ekwaro-Osire

Meteorological drought indicators are commonly used for agricultural drought contingency planning in Ethiopia. Agricultural droughts arise due to soil moisture deficits. While these deficits may be caused by meteorological droughts, the timing and duration of agricultural droughts need not coincide with the onset of meteorological droughts due to soil moisture buffering. Similarly, agricultural droughts can persist even after the cessation of meteorological droughts due to delayed hydrologic processes. Understanding the relationship between meteorological and agricultural droughts is therefore crucial. An evaluation framework was developed to compare meteorological and agricultural droughts using a suite of exploratory and confirmatory tools. Receiver operator characteristics (ROC) was used to understand the covariation of meteorological and agricultural droughts. Comparisons were carried out between SPI-2, SPEI-2 and Palmer Z-index to assess intra-seasonal droughts and between SPI-6, SPEI-6 and PDSI for full-season evaluations. SPI was seen to correlate well with selected agricultural drought indicators but did not explain all the variability noted in agricultural droughts. The relationships between meteorological and agricultural droughts exhibited spatial variability which varied across indicators. SPI is better suited to predict non-agricultural drought states more so than agricultural drought states. Differences between agricultural and meteorological droughts must be accounted for better drought-preparedness planning.


2020 ◽  
Vol 12 (11) ◽  
pp. 1700
Author(s):  
Yuanhuizi He ◽  
Fang Chen ◽  
Huicong Jia ◽  
Lei Wang ◽  
Valery G. Bondur

Droughts are one of the primary natural disasters that affect agricultural economies, as well as the fire hazards of territories. Monitoring and researching droughts is of great importance for agricultural disaster prevention and reduction. The research significance of investigating the hysteresis of agricultural to meteorological droughts is to provide an important reference for agricultural drought monitoring and early warnings. Remote sensing drought monitoring indices can be employed for rapid and accurate drought monitoring at regional scales. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and the surface temperature product are used as the data sources. Calculating the temperature vegetation drought index (TVDI) and constructing a comprehensive drought disaster index (CDDI) based on the crop growth period allowed drought conditions and spatiotemporal evolution patterns in the Volgograd region in 2010 and 2012 to be effectively monitored. The causes of the drought were then analyzed based on the sensitivity of a drought to meteorological factors in rain-fed and irrigated lands. Finally, the lag time of agricultural to meteorological droughts and the hysteresis in different growth periods were analyzed using statistical analyses. The research shows that (1) the main drought patterns in 2010 were spring droughts from April to May and summer droughts from June to August, and the primary drought patterns in 2012 were spring droughts from April to June, with an affected area that reached 3.33% during the growth period; (2) local drought conditions are dominated by the average surface temperature factor. Rain-fed lands are sensitive to the temperature and are therefore prone to summer droughts. Irrigated lands are more sensitive to water shortages in the spring and less sensitive to extremely high temperature conditions; (3) there is a certain lag between meteorological and agricultural droughts during the different growth stages. The strongest lag relationship was found in the planting stage and the weakest one was found in the dormancy stage. Therefore, the meteorological drought index in the growth period has a better predictive ability for agricultural droughts during the appropriately selected growth stages.


2015 ◽  
Vol 16 (3) ◽  
pp. 1397-1408 ◽  
Author(s):  
Hongshuo Wang ◽  
Jeffrey C. Rogers ◽  
Darla K. Munroe

Abstract Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.


2013 ◽  
Vol 10 (6) ◽  
pp. 7963-7997 ◽  
Author(s):  
A. McNally ◽  
C. Funk ◽  
G. J. Husak ◽  
J. Michaelsen ◽  
B. Cappelaere ◽  
...  

Abstract. Rainfall gauge networks in Sub-Saharan Africa are inadequate for assessing Sahelian agricultural drought, hence satellite-based estimates of precipitation and vegetation indices such as the Normalized Difference Vegetation Index (NDVI) provide the main source of information for early warning systems. While it is common practice to translate precipitation into estimates of soil moisture, it is difficult to quantitatively compare precipitation and soil moisture estimates with variations in NDVI. In the context of agricultural drought early warning, this study quantitatively compares rainfall, soil moisture and NDVI using a simple statistical model to translate NDVI values into estimates of soil moisture. The model was calibrated using in-situ soil moisture observations from southwest Niger, and then used to estimate root zone soil moisture across the African Sahel from 2001–2012. We then used these NDVI-soil moisture estimates (NSM) to quantify agricultural drought, and compared our results with a precipitation-based estimate of soil moisture (the Antecedent Precipitation Index, API), calibrated to the same in-situ soil moisture observations. We also used in-situ soil moisture observations in Mali and Kenya to assess performance in other water-limited locations in sub Saharan Africa. The separate estimates of soil moisture were highly correlated across the semi-arid, West and Central African Sahel, where annual rainfall exhibits a uni-modal regime. We also found that seasonal API and NDVI-soil moisture showed high rank correlation with a crop water balance model, capturing known agricultural drought years in Niger, indicating that this new estimate of soil moisture can contribute to operational drought monitoring. In-situ soil moisture observations from Kenya highlighted how the rainfall-driven API needs to be recalibrated in locations with multiple rainy seasons (e.g., Ethiopia, Kenya, and Somalia). Our soil moisture estimates from NDVI, on the other hand, performed well in Niger, Mali and Kenya. This suggests that the NDVI-soil moisture relationship may be more robust across rainfall regimes than the API because the relationship between NDVI and plant available water is less reliant on local characteristics (e.g., infiltration, runoff, evaporation) than the relationship between rainfall and soil moisture.


2020 ◽  
pp. 517-531

This study aims to indicate the relationship between meteorological drought and hydrological drought on the example of a lakeland catchment in north-western Poland. The Standardised Precipitation Index (SPI) and Standardised Runoff Index (SRI) were used to identify drought during 1-, 3-, 6-, 9- and 12-month cumulation periods. In the study period 1971–2015, 13 to 62 meteorological droughts and 6 to 21 hydrological droughts were identified. The highest number of droughts occurred for the shortest cumulation period (1 month) and the lowest number for the longest cumulation period (12 months). The relationship between SPI and SRI coefficients over the annual course was strongest for the 9-month cumulation period. The highest correlation coefficient was obtained for February.


Author(s):  
S. Sreekesh ◽  
N. Kaur ◽  
S. R. Sreerama Naik

<p><strong>Abstract.</strong> The deficiency in rainfall leads to meteorological droughts. Its manifestations are visible both in the vegetation cover and soil moisture. The present study assessed the characteristics of agricultural drought following meteorological droughts. The study also assessed the severity of meteorological droughts and their manifestation on the agriculture and soil moisture in a semi-arid area. The study has been carried out for the Malaprabha sub-basin which partly covers three districts of North Interior Karnataka, India. India Meteorological Department’s (IMD) criteria have been used to identify the drought years, and its severity has been assessed through the Standard Precipitation Index (SPI). The IMD’s monthly rainfall data were used to identify the drought years and periods for the region. Among the drought years, the mild, moderate, and severe drought along with deficit and excess rainfall years were considered to assess and characterize the soil moisture conditions and the agricultural drought. The satellite image based indices for these selected years were constructed to determine the soil moisture conditions and the agricultural drought severity. The Temperature-Vegetation Dryness Index (TVDI) was used to determine the soil moisture conditions. The indices employed to determine the agriculture drought are NDVI, Thermal Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index (VHI). These satellite-based indices were calculated using the Landsat images of the selected drought and non-drought years. The results showed that the seasonal and annual drought are frequent in the study area. There are spatial and temporal variations in the drought years and their severity. The satellite-based indices clearly indicate the spatial variation in the agriculture droughts and its intensity. It has been found that the impact of drought on agriculture has significantly reduced due to the development of well-irrigation in the sub-basin. VHI is more appropriate in determining the agricultural drought and its characteristics.</p>


Author(s):  
Parwati ◽  
Miao Jungang ◽  
Orbita Roswintiarti

In this research, several meteorological and agricultural drought indices based on remote sensing data are built for drought monitoring over paddy area in Indramayu District, West Java, Indonesia. The meteorological drought index of Standardized Precipitation Index (SPI) is developed from monthly Outgoing Long Wave Radiation (OLR) data from 1980 to 2005. The SPI represents the deficient of precipitation. Meanwhile, the agricultural drought of Vegetation Health Index (VHI) was developed from daily Moderate-resolution ImagingSpectroradiometer (MODIS) data during dry season (May-August) 2003-2006. The VHI was designed to monitoring vegetation health, soil moisture, and thermal conditions. The result shows that the agricultural drought occurate in Indramayu District, especially in the northern and southern part during the dry season in 2003 and 2004. It is found that there is a strong correlation between VHI and soil moisture measured in the field (r=0.84). Key words:Agricultural drought, Meteorological drought, Standardized Precipitation Index, Temperature Condition Index, Vegetation Condition Index.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 855
Author(s):  
Renata Kuśmierek-Tomaszewska ◽  
Jacek Żarski

The results of numerous studies concerning meteorological drought show that there is a considerable impact of this phenomenon on several regions in Europe. On the other hand, statistical trends of dry spell occurrences in some areas of the continent are unclear or even negative. Therefore, further research should be directed towards a better understanding of this hazard, particularly the seasonal changes, in order to elaborate adequate strategies to prevent and mitigate its undesirable effects. The main goal of the work, conducted as part of the research strategy on contemporary climate change, was to confirm the hypothesis of increasing frequency and intensity of droughts during the period of active plant growth and development (May–August) in central Poland in 1961–2020. The prevailing rainfall conditions in this period determine the production and economic effects of agricultural output. The analysis covered a multiannual period, including two separate climate normals: 1961–1990 and 1991–2020. The work is also aimed at detecting relationships between indicators characterizing meteorological drought (the Standardized Precipitation Index—SPI) and agricultural drought (the actual precipitation deficiency—PAdef). It was found that the frequency of meteorological droughts in the studied period amounts to 30.0% (severe and extreme constitute 6.7%). No significant increase in the frequency and intensity of meteorological droughts over time was observed. Relationships between meteorological and agricultural drought indicators were significant, so the SPI can be considered an indicator of plant irrigation needs in the studied area.


2020 ◽  
Vol 24 (4) ◽  
pp. 1985-2002 ◽  
Author(s):  
Abraham J. Gibson ◽  
Danielle C. Verdon-Kidd ◽  
Greg R. Hancock ◽  
Garry Willgoose

Abstract. Global agricultural drought policy has shifted towards promoting drought preparedness and climate resilience in favor of disaster-relief-based strategies. For this approach to be successful, drought predictability and methods for assessing the many aspects of drought need to be improved. Therefore, this study aims to bring together meteorological and hydrological measures of drought as well as vegetation and soil moisture data to assess how droughts begin, propagate and subsequently terminate for a catchment in eastern Australia. For the study area, 13 meteorological drought periods persisting more than 6 months were identified over the last 100 years. During these periods, vegetation health, soil moisture and streamflow declined; however, all of the indicators recovered quickly post-drought, with no evidence of extended impacts on the rainfall–runoff response, as has been observed elsewhere. Furthermore, drought initiation and propagation were found to be tightly coupled to the combined state of large-scale ocean–atmosphere climate drivers (e.g., the El Niño–Southern Oscillation, the Indian Ocean Dipole and the Southern Annular Mode), whereas termination was caused by persistent synoptic systems (e.g., low-pressure troughs). The combination of climatic factors, topography, soils and vegetation are believed to be what makes the study catchments more resilient to drought than others in eastern Australia. This study diversifies traditional approaches to studying droughts by quantifying the catchment response to drought using a range of measures that could also be applied in other catchments globally. This is a key step towards improved drought management.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1375 ◽  
Author(s):  
Ali Ajaz ◽  
Saleh Taghvaeian ◽  
Kul Khand ◽  
Prasanna H. Gowda ◽  
Jerry E. Moorhead

A new agricultural drought index was developed for monitoring drought impacts on agriculture in Oklahoma. This new index, called the Soil Moisture Evapotranspiration Index (SMEI), estimates the departure of aggregated root zone moisture from reference evapotranspiration. The SMEI was estimated at five locations across Oklahoma representing different climates. The results showed good agreement with existing soil moisture-based (SM) and meteorological drought indices. In addition, the SMEI had improved performance compared to other indices in capturing the effects of temporal and spatial variations in drought. The relationship with crop production is a key characteristic of any agricultural drought index. The correlations between winter wheat production and studied drought indices estimated during the growing period were investigated. The correlation coefficients were largest for SMEI (r > 0.9) during the critical crop growth stages when compared to other drought indices, and r decreased by moving from semi-arid to more humid regions across Oklahoma. Overall, the results suggest that the SMEI can be used effectively for monitoring the effects of drought on agriculture in Oklahoma.


Sign in / Sign up

Export Citation Format

Share Document