scholarly journals Particle Engineering and Spray Drying Process designing for Solubility Enhancement of Lopinavir

2021 ◽  
Vol 11 (5) ◽  

To improve the solubility enhancement of solid dispersion of Lopinavir by spray-drying by adding the Soluplus as polymer that is compatible with Lopinavir, was evaluated and the process used for preparation of Spray dried solid dispersion was validated and the 1:3 ratio used for preparation of solid dispersion. Dissolution tests were carried out on several spray dried solid dispersion of Lopinavir and physical mixture. The solid dispersion characterized by DSC, XRD, % Entrapment Efficiency, solubility study, drug content determination, practical yield, dissolution studies. Keyword: Lopinavir, Soluplus, Spray Drying Technique, Dissolution studies

Author(s):  
Aliasgar J Kundawala ◽  
Khushbu S Chauhan ◽  
Harsha V Patel ◽  
Swati K Kurtkoti

Budesonide is an anti-asthmatic agent which is used to control the symptoms of asthma like bronchospasm, oedema. Drug delivered to lung through inhalation will provide systemic and local drug delivery at lower dose in chronic and acute diseases. Dry powder inhalers are the best choice for targeting the anti-asthmatic drugs through pulmonary route. The objective of the present study is to prepare inhalable lipid coated budesonide microparticles by spray drying method so effective delivery of budesonide to the lungs can be achieved. The microparticles in the form of dry powder were obtained by either spray drying liposomal drug suspension or lipid drug suspension. The liposomes were initially prepared by solvent evaporation method using Hydrogenated Soyabean Phosphatidylcholine and Cholesterol (1:1, 1:2, 2:1) as lipid carrier and then spray dried later with mannitol as bulking agent at different lipid to diluent ratio (1:1.25, 1:2.5 & 1:5). The liposomes and liposomal dry powder were evaluated for vesicle size, % entrapment efficiency, in vitro drug release studies, powder characteristics, aerosol performance and stability studies. The liposomes prepared showed vesicle size (2-8 µm), Entrapment efficiency (92.22%) at lipid: drug ratio of (2.5:1) and observed 80.41 % drug release in 24 hrs. Pro-liposomes prepared by spray drying of liposomal drug suspension (LSD1) showed emitted dose, mean mass aerodynamic diameter, geometric standard deviation and fine particle fraction of 99.01%, 3.12 µm, 1.78 and 43.5% along with good powder properties. The spray dried powder was found to be stable at 4 ± 2 °C & 65% ± 5 % RH. The inhalable microparticles containing Budesonide containing lipid dry powder was successfully prepared by spray drying method that showed good aerodynamic properties and stability with mannitol as diluent. The microparticles produced with this novel approach could deliver drug on target via inhalation route and also ease manufacture process at large scale in fewer production steps.


Author(s):  
Tran Thi Hai Yen ◽  
Tran Thi Nhu Quynh ◽  
Duong Thi Thuan ◽  
Pham Thi Minh Hue

The aims of study was formulation and evaluation of berberin (BBR) loaded proliposomes by spray-drying method. BBR proliposomes were evaluated for appearance, spray-drying efficiency, morphology and differential scanning calorimetry (DSC). Liposomes, obtained after hydration, were evaluated for particle size, size distribution, morphology and entrapment efficiency. The results showed that BBR proliposomes were prepared by spray-drying method with molar ratio of Hydrogenated soy phosphatidyl choline (HSPC): Sodium deoxycholat (NaDC): vitamin E (vtE): BBR = 7: 1: 6: 6. Mixture of manitol and Aerosil at weight ratio of 97:3 was used as carrier. Results of DSC showed that berberin was dispersed molecularly into proliposomes powder. BBR liposomes, obtained after hydration, had average particle diameter of about 29 μm and entrapment efficiency was 22.23%. Keywords Proliposomes, liposomes, berberin, sodium deoxycholate, spray-dried. References [1] W. Kong, J. Wei, A. Parrveen et al., Berberine is A Novel Cholesterol-Lowering Drug Working Through A Unique Mechanism Distinct From Statins, Nature Medicine, Vol. 10, No. 12, 2004, pp. 1344-1351, https://doi.org/10.1038/nm1135.[2] S. K. Kulkarni, A. Dhir, on The Mechanism of Antidepressant-Like Action of Berberine Chloride, European Journal of Pharmacology, Vol. 589, No. 1-3, 2008, pp. 163-172, https://doi.org/ 10.1016/j.ejphar.2008.05.043.[3] Y. T. Ho, J. S. Yang, T. C. Li et al., Berberine Suppresses in Vitro Migration and Invasion of Human SCC-4 Tongue Squamous Cancer Cells Through the Inhibitions of FAK, IKK, NF-Κb, U-PA and MMP-2 and-9, Cancer Letters, Vol. 279, No. 2, 2009, pp. 155-162, https://doi.org/10.1016/j.canlet.2009.01.033.[4] S. Muneer, Z. Masood, S. Butt et al., Proliposomes as Pharmaceutical Drug Delivery System: A Brief Review, Journal of Nanomedicine and Nanotechnology, Vol. 8, No. 3, 2017, pp. 448-450, https://doi.org/10.4172/2157-7439.1000448.[5] H. K. Omer, N. R. Hussein, A. Ferraz et al., Spray-Dried Proliposome Microparticles for High-Performance Aerosol Delivery Using a Monodose Powder Inhaler, AAPS PharmSciTech, Vol. 19, No. 5, 2018, pp. 2434-2448, https://doi.org/10.1208/s12249-018-1058-4.[6] T. T. H. Yen, T. T. N. Quynh, D. T. Thuan, P. T. M. Hue, Preparation of Berberin Liposomes, Contained Sodium Deoxycholate by Ethanol Injection Method, Journal of Pharmaceutical Research and Drug information, Vol. 11, No. 4, 2020, pp. 11-17 (in Vietnamese). [7] T. T. H. Yen, T. T. Hue, P. T. M. Hue et al., Preparation of Berberin Proliposomes by Film Deposition on Carrier Surface Method, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 36, No. 2, 2020, pp. 9-15, https://doi.org/10.25073/2588-1132/vnumps.4204.[8] R. G. Ahmed, S. Sherif, Z. Zainab et al., Silymarin Spray-Dried Proliposomes: Preparation, Characterization and Cytotoxic Evaluation, Drug Delivery Letters, Vol. 10, No. 1, 2020, pp. 14-23, https://doi.org/10.2174/2210303109666190722114211.[9] A. Bangham, M. M. Standish, J. C. Watkins Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids, Journal of Molecular Biology, Vol. 13, No. 1, 1965, pp. 238-252.    


Author(s):  
Ankit Rampal ◽  
Manmeet Singh ◽  
Shanta Mahajan ◽  
Neena Bedi

Objective: The aim of the present study was to investigate the effect of novel polymeric carriers and to develop solid dispersion formulation that could improve in vitro profile of Fenofibrate (FB). Methods: Spray drying technique was used to fabricate solid dispersions with hydrophilic carriers, mainly hydroxypropyl methylcellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). Solid dispersions in the form of spray-dried powder were characterized with respect to the pure drug and the corresponding physical mixtures by optical microscopy, x-ray diffraction (XRD), fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Size and morphology of optimized solid dispersion were performed by scanning electron microscopy (SEM). Furthermore, in vitro dissolution comparisons were carried out between the optimized solid dispersion against the pure drug and the physical mixtures. Results: Solubility studies demonstrated that the solubility of FB was not affected by pH change. The transformation of crystalline FB into an amorphous solid dispersion powder has been clearly demonstrated by optical microscopy. The molecular dispersion of drug in the dispersion matrix prepared by spray drying was confirmed in XRD and DSC studies. IR spectroscopy was observed with negligible incompatibility of the drug with polymers. Spherical morphology was observed in SEM with no evidence of FB crystals. The prepared solid dispersions exhibited dissolution improvement as compared to the pure drug and spray dried FB in 0.05 M SLS, with HPMCAS as the superior carrier over HPMC. Conclusion: The present study vouches better in vitro profile of FB from spray-dried HPMCAS based solid dispersions.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 14 ◽  
Author(s):  
Angelika Jüptner ◽  
Regina Scherließ

Spray drying as a particle engineering technique is of increasing interest in the field of inhalation and is already being utilised e.g., for the PulmoSphereTM products. As spray dried particles tend to agglomerate and are mechanically instable, low dose filling processes can be difficult. This study correlates powder flowability tests of spray dried formulations with filling processes with drum and dosator systems. Four pulmonary and four nasal powders with different characteristics in terms of shape, composition, and surface polarity were prepared and characterised for powder flowability according to Ph. Eur. and by powder rheometry. All formulations were filled with a manual drum TT and a dosator system. The classical flowability tests according to the Ph. Eur. showed a bad flow behaviour for hydrophilic pulmonary powders (x50 ~ 3 µm), whereas hydrophobic pulmonary particles and nasal particles (x50 ~ 25 µm) showed a better flowing behaviour. Powder rheometry supports this finding but can better differentiate flow behaviours.


2015 ◽  
Vol 23 (4) ◽  
pp. 352-365 ◽  
Author(s):  
Bhavesh B. Patel ◽  
Jayvadan K. Patel ◽  
Subhashis Chakraborty ◽  
Dali Shukla

Author(s):  
Mai Khanfar ◽  
Bashar Al Taani ◽  
Eman Mohammad

Objective: To prepare stable amorphous solid dispersions of candesartan cilexetil (CAN) with different types of silica, including non-porous (aerosil 200) and porous silica (sylysia 350) using the spray-drying method. Methods: various ratios of candesartan cilexetil (CAN) were spray dried with aerosil and sylysia. Powder x-ray diffraction (x-ray) differential scanning calorimetry (DSC), SEM were used to characterize the spray dried powders in addition to dissolution and stability studies. Results: X-ray results showed that the spray–dried (CAN) in the prepared solid dispersion were in amorphous form irrespective of the used silica. In (DSC) analysis, the melting peak of spray-dried (CAN-silica) solid dispersion disappeared. Dissolution property of (CAN) was remarkably improved by formulating with silica particles. In comparing the effect of the type of the silica particles, the dissolution rate of (CAN) from the spray-dried (CAN-sylysia) was faster than that (CAN-aerosil 200) irrespective of the drug content. It was also shown that the spray-dried formulation with silica did not recrystallize when storing at severe storage conditions (40 °C, 75% RH) for three months, while spray-dried (CAN) without silica easily re-crystallized under the same conditions. Conclusion: Spray drying of (CAN) with sylysia 350 is an efficient method to enhance the dissolution and stability of the drug.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Priya Muralidharan ◽  
Brielle Jones ◽  
Graham Allaway ◽  
Shyam S. Biswal ◽  
Heidi M. Mansour

AbstractChalcone derivatives are shown to possess excellent anti-inflammatory and anti-oxidant properties which are of great interest in treating respiratory diseases such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF). This study successfully designed and developed dry powder inhaler (DPI) formulations of TMC (2-trifluoromethyl-2′-methoxychalone), a new synthetic trifluorinated chalcone and Nrf2 agonist, for targeted pulmonary inhalation aerosol drug delivery. An advanced co-spray drying particle engineering technique was used to design and produce microparticulate/nanoparticulate formulations of TMC with a suitable excipient (mannitol) as inhalable particles with tailored particle properties for inhalation. Raw TMC and co-spray dried TMC formulations were comprehensively characterized for the first time using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, thermal analysis, X-ray powder diffraction (XRPD), and molecular fingerprinting as dry powders by ATR-FTIR spectroscopy and Raman spectroscopy. Further, biocompatibility and suitability of formulations were tested with in vitro cellular transepithelial electrical resistance (TEER) in air-interface culture (AIC) using a human pulmonary airway cell line. The ability of these TMC formulations to perform as aerosolized dry powders was systematically evaluated by design of experiments (DOEs) using three different FDA-approved human inhaler devices followed by interaction parameter analyses. Multiple spray drying pump rates (25%, 75%, and 100%) successfully produced co-spray dried TMC:mannitol powders. Raw TMC exhibited a first-order phase transition temperature at 58.15 ± 0.38 °C. Furthermore, the results demonstrate that these innovative TMC dry powder particles are suitable for targeted delivery to the airways by inhalation.


Author(s):  
Kusuma P. ◽  
Syukri Y ◽  
Sholehuddin F. ◽  
Fazzri N. ◽  
Romdhonah . ◽  
...  

The most efficient tablet processing method is direct compression. For this method, the filler-binder can be made by coprocessing via spray drying method. The purpose of this study was to investigate the effect of spray dried co-processing on microcrystalline cellulose (MCC) PH 101, lactose and Kollidon® K 30 as well as to define the optimum proportions. Spray dried MCC PH 101, lactose, and Kollidon® K 30 were varied in 13 different mixture design proportions to obtain compact, free-flowing filler-binder co-processed excipients (CPE). Compactibility and flow properties became the key parameters to determine the optimum proportions of CPE that would be compared to their physical mixtures. The result showed that the optimum proportion of CPE had better compactibility and flow properties than the physical mixtures. The optimum CPE, consisting of only MCC PH 101 and Kollidon® K 30 without lactose, that were characterized using infrared spectrophotometer, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM) indicated no chemical change therein. Therefore, this study showed that spray dried MCC PH 101, lactose and Kollidon® K 30 could be one of the filler-binder alternatives for direct compression process.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 608
Author(s):  
Csilla Bartos ◽  
Patrícia Varga ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

The absorption of non-steroidal anti-inflammatory drugs (NSAIDs) through the nasal epithelium offers an innovative opportunity in the field of pain therapy. Thanks to the bonding of chitosan to the nasal mucosa and its permeability-enhancing effect, it is an excellent choice to formulate microspheres for the increase of drug bioavailability. The aim of our work includes the preparation of spray-dried cross-linked and non-cross-linked chitosan-based drug delivery systems for intranasal application, the optimization of spray-drying process parameters (inlet air temperature, pump rate), and the composition of samples. Cross-linked products were prepared by using different amounts of sodium tripolyphosphate. On top of these, the micrometric properties, the structural characteristics, the in vitro drug release, and the in vitro permeability of the products were studied. Spray-drying resulted in micronized chitosan particles (2–4 μm) regardless of the process parameters. The meloxicam (MEL)-containing microspheres showed nearly spherical habit, while MEL was present in a molecularly dispersed state. The highest dissolved (>90%) and permeated (~45 µg/cm2) MEL amount was detected from the non-cross-linked sample. Our results indicate that spray-dried MEL-containing chitosan microparticles may be recommended for the development of a novel drug delivery system to decrease acute pain or enhance analgesia by intranasal application.


Sign in / Sign up

Export Citation Format

Share Document