scholarly journals The role of geodynamic stress in the formation of oil and gas structures in the Caspian Sea (on the example of the Shah Deniz, Umid, Babek, Bulla Deniz fields)

Author(s):  
Г.О. Велиев

В статье рассматривается геодинамическое напряжение в формировании нефтегазовых структур в пределах Каспийского моря (на примере нефтяных месторождений Шахдениз, Умид, Бабек и Булла Дениз). Цель работы. Была предложена теория формирования Каспийского бассейна на основе модели формирования мантийных плюмов. Метод работы. В данной методике предполагается, что в пределах мантийных плюмов происходит подъём вещества и вынос тепла из мантийных глубин. Считается также, что в головной части мантийного плюма происходит частичное плавление мантийного вещества и образуется магмогенерирующая об­ласть. Магма, формирующаяся в головной части, обычно имеет щёлочно-базальтовый состав. При достижении мантийного плюма подошвы литосферы над ним проявляется плюмовый магматизм: про­исходит внедрение интрузий в земную кору и вдоль границы земной коры и мантии. В статье отмечено, что в области, охватываемой Палео-Каспием, магма переместилась из мантийного слоя на поверхность Земли, изменила свою структуру вблизи поверхности Земли, а область, очерченная локальными аномальными полями в гравитации и магнитных полях, соответствовала палеокаспийской морфологии. Зоны сейсмической активности и круговые региональные разломы, в условиях геодинамического напряжения современного Каспийского бассейна считаются признаками плюмового процесса. Результаты работы. Установлено, что сильные землетрясения с относительной магнитудой M≥6–8 происходят в диапазоне глубин 7–20 км. В северной дуге Южного Каспия, где активность плюма все еще присутствует в интервале 55–65 км в базальтовом слое, в этом интервале наблюдаются признаки деформации в соответствии с характерными очагами землетрясения. Геодинамическое напряжение, накопленное в результате горизонтальных, вертикальных и круговых движений, создаваемых плюмом в мантии, повлияло на динамику осадочного слоя до глубины 25 км, границы Конрада 20–32 км 40–53 км, и границы Мохо до глубины 40–53 км, где постоянно менялась морфоструктура осадочного слоя. Процесс осаждения в бассейне Каспийского моря начался до мезозоя, и в течение юрского периода земная кора продолжала снижаться и примерно с такой же тенденцией происходило формирование бассейна. В результате вихревого движения, созданного магматическим шлейфом в Каспийском бассейне, выстроились кольцевые спиральные антиклинальные структуры (Бахар, Шах-Дениз, Абшерон, Шафаг, Машал, Бабек, Умид, Булла-Дениз, Асиман, Зафар и др.), где было накоплено большое количество углеводородного потенциала страны. Проанализированы стратиграфическо-литологические особенности отложений в структуре Умид и показано, что там запасы нефти и газа очень велики The article considers the geodynamic stress in the formation of oil and gas structures within the Caspian Sea (on the example of the Shah Deniz, Umid, Babek, Bulla Deniz fields). Aim. A theory for the formation of the Caspian basin was proposed based on the “mantle plume” model. Methods. In this technique, it is assumed that within the mantle plumes there is an uplift of matter and heat removal from the mantle depths. It is also believed that in the head of the mantle plume there is a partial melting of the mantle material and a magma-generating area is formed. The magma that is formed in the head is usually alkaline-basalticcomposition. When the mantle plume reaches the base of the lithosphere, plume magmatism appears above it: intrusions are introduced into the earth's crust and along the border of the earth's crust and mantle. It is noted that in the area covered by the Paleo-Caspian, magma moved from the mantle layer to the Earth's surface. Thus, it changed its structure near the Earth's surface, and the area outlined by local anomalous fields in gravity and magnetic fields corresponded to the paleocaspian morphology. Zones of seismic activity and circular regional faults, under the geodynamic stress of the modern Caspian basin, are considered signs of a plume process. Results. It has been established that strong earthquakes with a relative magnitude of M≥6–8 occur in the depth range of 7–20 km. In the northern arc of the South Caspian, where plume activity is still present in the 55–65 km interval in the basalt layer, there are signs of deformation in this interval in accordance with the characteristic earthquake sources. Geodynamic stress accumulated as a result of horizontal, vertical and circular motions created by the plume in the mantle influenced the dynamics of the sedimentary layer to a depth of 25 km, the Conrad boundaries 20–32 km 40–53 km, and the Moho boundaries to a depth of 40–53 km.There the morphostructure of the sedimentary layer was constantly changing. The deposition process in the basin of the Caspian Sea began before the Mesozoic, and during the Jurassic period the earth's crust continued to decline and the formation of the basin took place with approximately the same tendency. As a result of the vortex movement created by the magmatic plume in the Caspian basin, the circular spiral anticlinal structures (Bahar, ShahDeniz, Absheron, Shafag, Mashal, Babek, Umid, BullaDeniz, Asiman, Zafar, etc.) were built. There was accumulated the large amount of the country's hydrocarbon potential. The stratigraphic and lithological features of deposits in the structure ofUmidare analyzed and it is shown that there are very large reserves of oil and gas.

2021 ◽  
Vol 13 (1) ◽  
pp. 21-36
Author(s):  
Stanislav Aleksandrovich Pritchin

For almost three centuries, starting with the campaign of Peter the Great in 1721-1722, Russia has traditionally played a key role in the Caspian Sea. The situation changed dramatically with the collapse of the USSR in 1991 and the emergence of three new regional players-Azerbaijan, Kazakhstan and Turkmenistan. For Russia, this meant a significant reduction in influence in the region and the loss of control over most of the water area and the sea and its resources. In the historiography devoted to the region, the emphasis is placed on assessing the new round of geopolitical struggle, the position and interests of Western and regional powers. The author of this article provides a critical analysis of changes in Russian policy towards the Caspian Sea over the past 30 years and assesses the effectiveness of these changes. The difficult transition from the role of a dominant player in a region closed to external competitors to an open geopolitical confrontation over resources, their transportation routes, and political influence at the first stage was not in favor of Russia. Russia could not defend the principle of a condominium for joint development of hydrocarbon resources of the sea. With the active assistance of Western competitors, Russia lost its status as a monopoly transit country for oil and gas from the region. At the same time, thanks to diplomatic efforts and increased political dialogue with its neighbors in the region, Russia managed to resolve all territorial issues at sea by 2003, maintain the closed status of the sea for the military forces of third countries, and by 2018 complete work on the Convention on the international legal status of the sea, which established the principles of cooperation in the region that are important for the Russian Federation. Thus, official Moscow managed to achieve the strategic goals adapted after the collapse of the USSR by using the traditional strengths of its foreign policy and consolidate its status as the most influential player in the region.


2021 ◽  
Vol 82 (3) ◽  
pp. 33-48
Author(s):  
NABIEVA VICTORIA V. ◽  
◽  
SEREBRYAKOV ANDREY O. ◽  
SEREBRYAKOV OLEG I. ◽  
◽  
...  

Hydrogeological conditions of reservoir waters of oil and gas fields in the northern water area of the Caspian Sea characterize the geological features of the structure of the Northern Caspian shelf, as well as the thermodynamic parameters of the exploitation of productive deposits, production and transportation of oil and gas. Reservoir waters contain water-soluble gases. According to the size of mineralization, the ratio of the main components of the salt composition, as well as the presence of iodine and bromine, reservoir waters can be attributed to a relatively "young" genetic age, subject to secondary geochemical processes of changing the salt composition in interaction with "secondary" migrated hydrocarbons. The physical and chemical properties of reservoir waters are determined by PVT analysis technologies. Hydrogeological and geochemical studies of compatibility with reservoir waters of marine waters injected to maintain reservoir pressures (PPD) during the development of offshore fields in order to increase the oil recovery coefficient (KIN) indicate the absence of colmating secondary sedimentation in mixtures of natural and man-made waters.


Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 99 ◽  
Author(s):  
Elena Bataleva ◽  
Anatoly Rybin ◽  
Vitalii Matiukov

On the basis of the Research Station of the Russian Academy of Sciences in Bishkek, a unique scientific infrastructure—a complex geophysical station—is successfully functioning, realizing a monitoring of geodynamic processes, which includes research on the network of points of seismological, geodesic, and electromagnetic observations on the territory of the Bishkek Geodynamic Proving Ground located in the seismically active zone of the Northern Tien Shan. The scientific and practical importance of monitoring the geodynamical activity of the Earth’s crust takes place not only in seismically active regions, but also in the areas of the location of particularly important objects, mining, and hazardous industries. Therefore, it seems highly relevant to create new software and hardware to study geodynamic processes in the earth’s crust of seismically active zones, based on integrated monitoring of the geological environment in the widest possible depth range. The use of modern information technology in such studies provides an effective data management tool. The considering system for collecting, processing, and storing monitoring electromagnetic data of the Bishkek geodynamic proving ground can help overcome the scarcity of experimental data in the field of Earth sciences.


Oceanology ◽  
2010 ◽  
Vol 50 (6) ◽  
pp. 961-970
Author(s):  
A. A. Schreider ◽  
E. L. Mazo ◽  
A. A. Bulychev ◽  
M. P. Kulikova ◽  
D. A. Gilod ◽  
...  

2020 ◽  
Author(s):  
Vadim Rezvov ◽  
Peter Zavialov ◽  
Mikhail Krinitskiy

<p>The Caspian Sea is the largest inland water body on the Earth and a unique object for analysis. It is of great importance for the socioeconomic development of bordering countries. Unique fish resources and oil and gas fields are projected to provide a significant source of food and economic prosperity to the Caspian region, as well as energy to many parts of the world. National and transnational oil and gas corporations are involved in the utilization of the commercially attractive Caspian natural resources. The Caspian Sea has been influenced by climate change and anthropogenic disturbance during recent decades, yet the scientific understanding of this water body remains poor. Climatic variability of water circulation in the Caspian Sea remains unclear. Traditionally, currents in the Caspian Sea have been investigated by numerical methods. Instrumental observations of the currents in the Caspian Sea are mostly carried out in the shelf zone. Available data cover very short periods and reflect variability only in synoptic and higher frequency of the sea dynamics. In this work, water velocity data based on SeaHorse equipment is under consideration. Three stations were in northern Caspian, area adjacent to Jayik (Ural) River delta. In both cases, the instruments were deployed in 2016 and 2017 at the point 46.782N, 51.384E, depth about 3 m. In this work, we will present the preliminary results of our study of the field observations we gathered in these points. We also present the analysis of the potential drivers for the spatial and temporal patterns of the measured currents velocity.</p>


Sign in / Sign up

Export Citation Format

Share Document