scholarly journals A Mobile Percussograph for Medical Examination of the Torso

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Kayode P Ayodele ◽  
Femi J Olugbon ◽  
Oluwadare Ogunlade ◽  
Olawale B Akinwale ◽  
Oluwasegun T Akinniyi ◽  
...  

Medical percussion is a free, low-risk procedure used by physicians during physical examination of patients. Although it is very useful procedure, a downside to manual percussion is that its results are subjective, with typically low inter-observer agreement. Not much work has been done, however, to create automated and reliable percussion devices or percussograph. This paper reports the development of a mobile percussograph. A spring-loaded solenoid was used as the plessor generating mechanical impact for application to a subject’s skin. Generated signals were amplified and digitized at a rate of 22.1 kHz. Thereafter, Frequency B-Spline (FBSP) base wavelet transform at 512 scales was used for feature extraction. Spectrographs generated from the wavelet coefficients were used for training a MobileNet network with 17 inverted layers for a 3-way classification.  Training employed a cross entropy loss function and the Adam optimization algorithm. Learning rate was 0.001, and first and second moment decay rates were 0.9 and 0.999 respectively. Subject-specific test accuracies of 92.9 %, 93.7 %, and 96.4 % were obtained for three subjects, while the cross-subject classification accuracy was 95.0 %. As this is the first reported general purpose mobile percussograph reported in the literature, these results are state-of-the-art. This study has established the viability of implementing mobile percussography in a standard, repeatable and accurate manner, which can lead to faster and more reliable medical percussion globally.Keywords— MobileNet, Percussion, Percussograph, Percussography, Wavelets

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


Data ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Ruben Morales-Ferre ◽  
Wenbo Wang ◽  
Alejandro Sanz-Abia ◽  
Elena-Simona Lohan

This is a data descriptor paper for a set of raw GNSS signals collected via roof antennas and Spectracom simulator for general-purpose uses. We give one example of possible data use in the context of Radio Frequency Fingerprinting (RFF) studies for signal-type identification based on front-end hardware characteristics at transmitter or receiver side. Examples are given in this paper of achievable classification accuracy of six of the collected signal classes. The RFF is one of the state-of-the-art, promising methods to identify GNSS transmitters and receivers, and can find future applicability in anti-spoofing and anti-jamming solutions for example. The uses of the provided raw data are not limited to RFF studies, but can extend to uses such as testing GNSS acquisition and tracking, antenna array experiments, and so forth.


2021 ◽  
Author(s):  
Cheng Chen ◽  
Yuguo Zha ◽  
Daming Zhu ◽  
Kang Ning ◽  
Xuefeng Cui

AbstractMotivationGeneral-purpose protein structure embedding can be used for many important protein biology tasks, such as protein design, drug design and binding affinity prediction. Recent researches have shown that attention-based encoder layers are more suitable to learn high-level features. Based on this key observation, we propose a two-level general-purpose protein structure embedding neural network, called ContactLib-ATT. On local embedding level, a biologically more meaningful contact context is introduced. On global embedding level, attention-based encoder layers are employed for better global representation learning.ResultsOur general-purpose protein structure embedding framework is trained and tested on the SCOP40 2.07 dataset. As a result, ContactLib-ATT achieves a SCOP superfamily classification accuracy of 82.4% (i.e., 6.7% higher than state-of-the-art method). On the same dataset, ContactLib-ATT is used to simulate a structure-based search engine for remote homologous proteins, and our top-10 candidate list contains at least one remote homolog with a probability of 91.9%[email protected] and [email protected]


2021 ◽  
Author(s):  
Jordan DeKraker ◽  
Roy AM Haast ◽  
Mohamed D Yousif ◽  
Bradley Karat ◽  
Stefan Köhler ◽  
...  

AbstractThe archicortical hippocampus differs, like the neocortex, in its folding patterns between individuals. Here, we present an automated and robust BIDS-App, HippUnfold, for defining and indexing subject-specific hippocampal folding in MRI, analogous to popular tools used in neocortical reconstruction. This is critical for inter-individual alignment, with topology as the basis for homology. This topological framework enables qualitatively new analyses of morphological and laminar structure in the hippocampus or hippocampal subfields, and is critical for the advancement of neuroimaging analyses at a meso- or micro-scale. HippUnfold uses state-of-the-art deep learning combined with previously developed topological constraints on hippocampal tissue. It is designed to work with commonly employed sub-millimetric MRI acquisitions, with extensibility to microscopic resolutions as well. In this paper we illustrate the power of HippUnfold in feature extraction, and its construct validity compared to several extant hippocampal subfield analysis methods.


Author(s):  
Zhenzhen Yang ◽  
Pengfei Xu ◽  
Yongpeng Yang ◽  
Bing-Kun Bao

The U-Net has become the most popular structure in medical image segmentation in recent years. Although its performance for medical image segmentation is outstanding, a large number of experiments demonstrate that the classical U-Net network architecture seems to be insufficient when the size of segmentation targets changes and the imbalance happens between target and background in different forms of segmentation. To improve the U-Net network architecture, we develop a new architecture named densely connected U-Net (DenseUNet) network in this article. The proposed DenseUNet network adopts a dense block to improve the feature extraction capability and employs a multi-feature fuse block fusing feature maps of different levels to increase the accuracy of feature extraction. In addition, in view of the advantages of the cross entropy and the dice loss functions, a new loss function for the DenseUNet network is proposed to deal with the imbalance between target and background. Finally, we test the proposed DenseUNet network and compared it with the multi-resolutional U-Net (MultiResUNet) and the classic U-Net networks on three different datasets. The experimental results show that the DenseUNet network has significantly performances compared with the MultiResUNet and the classic U-Net networks.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yikui Zhai ◽  
He Cao ◽  
Wenbo Deng ◽  
Junying Gan ◽  
Vincenzo Piuri ◽  
...  

Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP), which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM (max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet’s performance. Extensive experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can achieve 67.48% classification accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


Sign in / Sign up

Export Citation Format

Share Document