scholarly journals INCREASE IN THE ELECTROMAGNETIC MOMENT OF A SUPERMINIATURE ELECTRIC MOTOR EXCITED BY RARE EARTH PERMANENT MAGNETS

Author(s):  
Roman A. Romanov ◽  
Tatyana V. Myasnikova ◽  
Alexey N. Matyunin

The article is devoted to improving the energy and performance characteristics of superminiature electric motors, which are widely used in modern devices of robotics and mechanotronics. With the development of digital and Autonomous robotic systems, the tasks of improving the efficiency of Executive micromechanisms that affect the functionality and duration of work in offline mode have become particularly relevant. Traditional design and technological solutions used in higher-power electric machines are not scalable to the field of superminiature electric machines. Domestic and foreign developers offer various design options and manufacturing technologies. The key design feature of the electric motor under consideration is a glass stator made by polycapillary fiber technology and an excitation system from rare-earth permanent magnets. In the wall of the glass case, holes are evenly distributed around the circumference, in which the control winding is laid. The motor excitation system is a two-pole permanent magnet located on the rotating rotor shaft. The purpose of the research is to determine the effect of changing the design of the excitation system by changing the location of the magnetic poles. The research uses software that simulates the electromagnetic field using the finite element method. In the course of research, it was found that a decrease in the body of a permanent magnet leads to a decrease in the electromagnetic moment, which is not compensated by a decrease in edge effects at the boundary of the poles of the magnet. However, an increase in the value of the maximum magnetic induction in the air gap allows us to conclude that edge effects at the pole boundary have a significant effect on reducing the energy characteristics of superminiature micromachines. Thus, the solutions proposed in this paper are not sufficient to increase the efficiency of the engine, but the data obtained indicate the need to reduce the edge effects of permanent magnets.

Author(s):  
I. N. Belezyakov ◽  
K. G. Arakancev

At present time there is a need to develop a methodology for electric motors design which will ensure the optimality of their geometrical parameters according to one or a set of criterias. With the growth of computer calculating power it becomes possible to develop methods based on numerical methods for electric machines computing. The article describes method of a singlecriterion evolutionary optimization of synchronous electric machines with permanent magnets taking into account the given restrictions on the overall dimensions and characteristics of structural materials. The described approach is based on applying of a genetic algorithm for carrying out evolutionary optimization of geometric parameters of a given configuration of electric motor. Optimization criteria may be different, but in automatic control systems high requirements are imposed to electromagnetic torque electric machine produces. During genetic algorithm work it optimizes given geometric parameters of the electric motor according to the criterion of its torque value, which is being calculated using finite element method.


1987 ◽  
Vol 96 ◽  
Author(s):  
J. Chavanne ◽  
J. Laforest ◽  
R. Pauthenet

ABSTRACTThe high remanence and coercivity of the new permanent magnet materials are of special interest in the static applications. High ordering temperature and large uniaxial anisotropy at the origin of their good permanent magnet properties are obtained in rare earth-transition metal compounds. Binary SmCo5 and Sm2Co17 and ternary Nd2Fe14B compounds are the basis materials of the best permanent magnets. New concepts of calculations of static devices with these magnets can be applied : the magnetization can be considered as rigid, the density of the surface Amperian current is constant, the relative permeability is approximately 1 and the induction calculations are linear. Examples of hexapoles with Sm-Co and NdFeB magnets are described and the performances are compared. The problems of temperature behaviour and corrosion resistance are underlined.


2013 ◽  
Vol 769 ◽  
pp. 3-10 ◽  
Author(s):  
Jan Tremel ◽  
Benjamin Hofmann ◽  
Florian Risch

Due to rapid developments within the family of rare-earth materials innovative electrical machines can nowadays be used as high efficient generators in various power, as well as rugged constructed machines for automobile battery based propulsion in hybrid and full electric vehicles. The production of different motor concepts spread into different design variants and creates complex variations especially regarding the rotor. Deriving from various research projects, the handling of the permanent magnet components is investigated, including the development of new assembly and fixation methods.


1991 ◽  
Vol 113 (4) ◽  
pp. 476-481 ◽  
Author(s):  
B. S. Rahman ◽  
D. K. Lieu

A principal source of vibration in permanent magnet motors and generators is the induced travelling forces from the rotating permanent magnets acting on the stator. The form of the magnetic field and resulting forcing function in the airgap of such machines is critical. The stator is modelled as a solid ring, with no teeth. Various motor parameters were investigated, including the effects of radial versus parallel magnetization, magnetization tolerances, and radial offset. The results were determined with analytical and FEM models. It was concluded that radial magnetization of the permanent magnets was preferable for both vibration and motor performance. Magnetization tolerances and radial offsets yielded a relatively more populated frequency spectrum for the forcing function and thus could lead to a greater probability of resonant modes being excited in the surrounding structure.


2021 ◽  
pp. 46-51
Author(s):  
V.A. Bovda ◽  
A.M. Bovda ◽  
I.S. Guk ◽  
V.N. Lyashchenko ◽  
A.O. Mytsykov ◽  
...  

High performance rare-earth permanent magnets become crucial components of modern electron accelerators. PLP (pressless process) method was described as the advanced production step in the current rare-earth permanent magnet manufacturing. The radiation resistance of SmCo and Nd-Fe-B magnets under electron beam with 10 and 23 MeV and bremsstrahlung were studied. Dipole magnetic systems on the base of rare-earth permanent magnets were designed for the technological electron accelerators at NSC KIPT.


2012 ◽  
Vol 523-524 ◽  
pp. 722-726 ◽  
Author(s):  
Yuki Matsuzaki ◽  
Yoichi Kadota ◽  
Kazuo Uzuka ◽  
Hideyuki Suenaga ◽  
Ken Sasaki ◽  
...  

This report proposes a miniaturized non-contact actuation mechanism for a surgical device for bone extension operation. The device is embedded inside the body, and the device controls the gap between the bones cut by operation. A small permanent magnet is attached to the outer gear of a cycloidal reducer that rotates a screw of the screw-nut mechanism. This magnet is forced by the external magnetic flux density controlled by the outer permanent magnets’ position. In this research, two pairs of permanent magnet bar were rotated by stepping motors outside the device. The outer gear is constrained in As a result, ring gear of the cycloidal reducer is driven in translational wobbling motion the inner gear is connected to the screw and the output nut position is driven linearly with screw rotation. The dimensions of the fabricated device were 7 mm in diameter and 39.7 mm in length. The output thrust of this device was 2 N.


Author(s):  
Tajuddin Nur ◽  
Yudha Suherman ◽  
Herlina

The cogging torque would still be a constant part of permanent magnet-electric machines. This happens because of the construction in which permanent magnets are attached to the rotor, and a slot is present at the core of the stator. The contact between the two, related to the distance between the magnetic surface and the stator slot, makes it challenging to eliminate the cogging torque. This study aims to maximize cogging torque by reducing it with a new method. The proposed method is a mixture of two techniques that indicate significant promise. This invention mixes two techniques to improve the final results. The first process is called magnetic edge shaping, and the second technique is called a dummy slot on the stator. A fractional slot number (FSN) type with 24 slots and 18 poles is the permanent magnet machine used for this investigation. This work is assisted by software version 4.2 of the Finite Element Magnetic Method (FEMM), which will simulate the original and the proposed design. The proposed method proved to be effective in minimizing the peak value of the cogging torque, as shown by the simulation results of 98% of the initial design. Combining the two techniques may reduce the tangential value of the flux so that the flux leading to the slot is lower than the initial design.


2018 ◽  
Vol 55 (4) ◽  
pp. 13-23 ◽  
Author(s):  
A. Rassõlkin ◽  
A. Kallaste ◽  
S. Orlova ◽  
L. Gevorkov ◽  
T. Vaimann ◽  
...  

Abstract The paper discusses the current developments in the recycling of electrical machines. The main attention is devoted to three types of motors: synchronous reluctance motor, permanent magnet assisted synchronous reluctance motor, and induction motor. Base materials of such electrical machines are also described in the paper. Rare-earth permanent magnets used in electrical machines are review separately. Moreover, the paper considers the features of the disassembly and recycling options.


2020 ◽  
Vol 178 ◽  
pp. 01049
Author(s):  
Timur Petrov ◽  
Alfred Safin

Permanent magnet synchronous electric machines are increasingly used in various drive technical complexes (oil industry, small generation, aviation industry, etc.). The presented optimization allows you to increase the energy performance of a synchronous machine without increasing the overall dimensions. Permanent magnet synchronous motors have become much more commonly operated in various drive technical complexes. For each drive complex, it is necessary to fulfil the requirements for the developed torque, cooling conditions and strength characteristics. The distribution of materials (topology) in the rotor casing of a synchronous machine (permanent magnets, iron, air, etc) determines the characteristics of permanent magnet synchronous electric machine.


Sign in / Sign up

Export Citation Format

Share Document