scholarly journals Investigation of the Effectiveness of Anaerobic Materials to Improve the Design of a Gaz Distribution Mechanism for a Hermetic Compressor

2021 ◽  
Vol 11 (4) ◽  
pp. 997-1005
Author(s):  
Alexey Vladimirovich Demenev
Keyword(s):  
2020 ◽  
Vol 154 ◽  
pp. 05007
Author(s):  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
Tomasz Pudlik ◽  
Daniel Malik

The Centre of Sustainable Development and Energy Saving in Miękinia conducts broad didactic activities for various groups of students. For its own purposes, and also as a concept to use for other didactic centers, a low-cost didactic stand in the scope of heat pumps was designed and implemented. The constructed device presents the operating principles and schematically describes the basic elements of the ground source heat pump system. The device was constructed using a used piston and hermetic compressor from an old fridge. As an evaporator and condenser, a heat exchanger made from copper pipe curved meandering was used. A carefully selected capillary tube was used as an expansion element. The distribution of the components and the visualization of the didactic rig were devised. The whole concept assumed the usage of propane (R290) as an ecological refrigerant. The project also includes cost statements for creating an alternative to a commercial, low-cost stand for teaching purposes at various levels of education and suggests ways of using the set.


Wear ◽  
1999 ◽  
Vol 236 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
C Ciantar ◽  
M Hadfield ◽  
A.M Smith ◽  
A Swallow

2000 ◽  
Author(s):  
Zhilong He ◽  
Xueyuan Peng ◽  
Pengcheng Shu

Abstract This paper presents a numerical method for simulating the thermal and fluid-dynamic behavior of hermetic compressors in the whole compressor domain. The model of fluid flow is developed by integrating transient one-dimensional conservation equations of continuity, momentum and energy through all of the elements from suction line to discharge line. The model describing thermal behavior is based on heat balance in the components such as muffler, connecting tubes and orifices. The calculation of the thermodynamic and transport properties for different refrigerants at various conditions has been considered, and some numerical results for a hermetic compressor are presented. The present study has demonstrated that the numerical simulation is a fest and reliable tool for compressor design.


Author(s):  
S Posch ◽  
J Hopfgartner ◽  
E Berger ◽  
B Zuber ◽  
R Almbauer ◽  
...  

2014 ◽  
Vol 89 ◽  
pp. 21-30
Author(s):  
Jose Daniel Biasoli de Mello

Household refrigeration represents 17.3% of home energy consumption in the USA and 47% in Brazil. This article overviews a multidisciplinary approach to develop a traditional hermetic compressor (oil lubricated, with several rotating parts), into an oil-less, linear motion, innovative compressor, with improved efficiency, versatility and sustainability. This involves the development of surface engineering processes combining purpose-oriented phases applied to soft substrates to achieve high wear resistance and load support and low friction coefficient. Initially, the role of the environment (air, CO2 and R600a) on the tribological behaviour of a commercially available Si-rich multifunctional DLC coating deposited on AISI 1020 steel is illustrated. In sequence, the influence of the thickness of different layers (DLC and CrN) on sliding wear is analysed. Results are presented using an original approach (3D triboscopic maps) for two distinct configurations (increasing load and constant load) and findings are confronted with numerical simulations using Film Doctor®. Finally, a low cost process to obtain a multifunctional coating (different nitrided layers + DLC) is described, which uses a unique thermal cycle reactor capable of coating parts in industrial scale with reduced cost.


2018 ◽  
Vol 26 (04) ◽  
pp. 1830003
Author(s):  
K. John Samuel ◽  
R. Thundil Karuppa Raj ◽  
G. Edison

The performance of the refrigeration system mainly depends on the hermetic compressor. Of different compressors used in the refrigeration and air conditioning industries, hermetic reciprocating compressors are still efficient and have its place in domestic applications. This paper presents a review of most critical parameters and their influence on the hermetic reciprocating compressor performance. A detailed study is done on parameters like backflow, effective force and flow areas, valve dynamic behavior, etc. This study mainly concentrated on compressor valves which influence the performance of the hermetic compressor to a much greater extent. Finally, the study reveals that these parameters are playing a vital role in influencing the performance of the refrigeration system. Advanced numerical techniques involving combining fluid flow and structural analysis involving Fluid Structure Interaction (FSI) may give a better insight of the flow physics happening inside the compressors and the effect of fluid force on valve fluttering, back pressure and dynamics characteristics can be revealed in depth to optimize the performance of the hermetic compressor for household applications involving air conditioners, refrigerators, water coolers, chillers, etc.


Sign in / Sign up

Export Citation Format

Share Document