The influence of lubricant viscosity on the wear of hermetic compressor components in HFC-134a environments

Wear ◽  
1999 ◽  
Vol 236 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
C Ciantar ◽  
M Hadfield ◽  
A.M Smith ◽  
A Swallow
2020 ◽  
Vol 154 ◽  
pp. 05007
Author(s):  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
Tomasz Pudlik ◽  
Daniel Malik

The Centre of Sustainable Development and Energy Saving in Miękinia conducts broad didactic activities for various groups of students. For its own purposes, and also as a concept to use for other didactic centers, a low-cost didactic stand in the scope of heat pumps was designed and implemented. The constructed device presents the operating principles and schematically describes the basic elements of the ground source heat pump system. The device was constructed using a used piston and hermetic compressor from an old fridge. As an evaporator and condenser, a heat exchanger made from copper pipe curved meandering was used. A carefully selected capillary tube was used as an expansion element. The distribution of the components and the visualization of the didactic rig were devised. The whole concept assumed the usage of propane (R290) as an ecological refrigerant. The project also includes cost statements for creating an alternative to a commercial, low-cost stand for teaching purposes at various levels of education and suggests ways of using the set.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Vincenzo Petrone ◽  
Adolfo Senatore ◽  
Vincenzo D'Agostino

This paper presents the application of an improved Yasutomi correlation for lubricant viscosity at high pressure in a Newtonian elastohydrodynamic line contact simulation. According to recent experimental studies using high pressure viscometers, the Yasutomi pressure-viscosity relationship derived from the free-volume model closely represents the real lubricant piezoviscous behavior for the high pressure typically encountered in elastohydrodynamic applications. However, the original Yasutomi correlation suffers from the appearance of a zero in the function describing the pressure dependence of the relative free volume thermal expansivity. In order to overcome this drawback, a new formulation of the Yasutomi relation was recently developed by Bair et al. This new function removes these concerns and provides improved precision without the need for an equation of state. Numerical simulations have been performed using the improved Yasutomi model to predict the lubricant pressure-viscosity, the pressure distribution, and the film thickness behavior in a Newtonian EHL simulation of a squalane-lubricated line contact. This work also shows that this model yields a higher viscosity at the low-pressure area, which results in a larger central film thickness compared with the previous piezoviscous relations.


2016 ◽  
Vol 284 ◽  
pp. 412-421 ◽  
Author(s):  
Sazal K. Kundu ◽  
Eric M. Kennedy ◽  
John C. Mackie ◽  
Clovia I. Holdsworth ◽  
Thomas S. Molloy ◽  
...  

1983 ◽  
Vol 105 (3) ◽  
pp. 406-412 ◽  
Author(s):  
Kyung Woong Kim ◽  
Masato Tanaka ◽  
Yukio Hori

The thermohydrodynamic performance of the bearing is analyzed, taking into account the three-dimensional variation of lubricant viscosity and density. The effect of pivot position and operating and environmental conditions on the performance is studied. The present analysis is compared with the isoviscous or the two-dimensional analysis, and is found to predict the bearing performance more accurately.


Sign in / Sign up

Export Citation Format

Share Document