scholarly journals Análisis de la contribución segmentaria en el rendimiento de las salidas de velocidad. (Analysis of the segmental contribution in sprint start performance)

Retos ◽  
2021 ◽  
Vol 43 ◽  
pp. 988-995
Author(s):  
Carmen Gutiérrez-Cruz ◽  
Marcos Gutiérrez-Dávila ◽  
Jose Campos-Granell

  En este estudio se ha aplicado un sistema de cálculo para examinar la contribución de cinco grupos de segmentos corporales al desplazamiento horizontal del CM en las salidas de tacos y explorar su relación con la velocidad horizontal del CM al final de 0.1s y 0.312s de la fase de aceleración. Han participado 20 velocistas con récord personal en 100 m de 11,05±0,31s. Se registraron las fuerzas horizontales de reacción mediante dos plataformas de fuerzas sincronizadas a una cámara de vídeo que registraba el plano sagital del movimiento. La contribución de las piernas al final de la fase de aceleración fue del 91.2±2.4 % y la pierna libre del 8.1±1.0 %. El tronco+cabeza es el primer grupo de segmentos que comienza a contribuir al desplazamiento horizontal del CM, alcanzando el 39.3 ± 24.3 % en los primeros 0.1s. Su rápida contribución hacia delante provoca una fuerza reactiva hacia atrás que podría estar relacionada con una dorsiflexión de los tobillos de 8º±3º y 9º±3º, pierna retrasada y adelantada, respectivamente. La contribución temprana de la cabeza+tronco se ha correlacionado positivamente con la velocidad horizontal al final de la fase de aceleración (r=0.622, p=0.003), lo que confirma su importancia como indicador de rendimiento en las salidas de tacos. Abstract. In this study, a calculation system has been applied to examine the contribution of five groups of body segments to the horizontal displacement of the Center of Mass (CM) in block starts and to explore their relationship with the horizontal velocity of the CM at the end of 0.1s and 0.312s of the acceleration phase. Twenty sprinters with a personal record in 100 m of 11.05 ± 0.31s have participated. The horizontal reaction forces were recorded using two force platforms synchronized to a video camera that recorded the sagittal plane of motion. The contribution of the legs at the end of the acceleration phase was 91.2 ± 2.4% and the free leg was 8.1 ± 1.0%. The trunk + head is the first group of segments that begins to contribute to the horizontal displacement of the CM, reaching 39.3 ± 24.3% in the first 0.1s. His quick forward contribution causes a reactive backward force that could be related to an ankle dorsiflexion of 8º ± 3º and 9º ± 3º, back and front leg, respectively. The early contribution of the head + trunk has been positively correlated with the horizontal velocity at the end of the acceleration phase (r = 0.622, p = 0.003), which confirms its importance as a performance indicator in block starts.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5517 ◽  
Author(s):  
Dong Sun ◽  
Gusztáv Fekete ◽  
Qichang Mei ◽  
Yaodong Gu

Background Normative foot kinematic and kinetic data with different walking speeds will benefit rehabilitation programs and improving gait performance. The purpose of this study was to analyze foot kinematics and kinetics differences between slow walking (SW), normal walking (NW) and fast walking (FW) of healthy subjects. Methods A total of 10 healthy male subjects participated in this study; they were asked to carry out walks at a self-selected speed. After measuring and averaging the results of NW, the subjects were asked to perform a 25% slower and 25% faster walk, respectively. Temporal-spatial parameters, kinematics of the tibia (TB), hindfoot (HF), forefoot (FF) and hallux (HX), and ground reaction forces (GRFs) were recorded while the subjects walked at averaged speeds of 1.01 m/s (SW), 1.34 m/s (NW), and 1.68 m/s (FW). Results Hindfoot relative to tibia (HF/TB) and forefoot relative to hindfoot (FF/HF) dorsiflexion (DF) increased in FW, while hallux relative to forefoot (HX/FF) DF decreased. Increased peak eversion (EV) and peak external rotation (ER) in HF/TB were observed in FW with decreased peak supination (SP) in FF/HF. GRFs were increased significantly with walking speed. The peak values of the knee and ankle moments in the sagittal and frontal planes significantly increased during FW compared with SW and NW. Discussion Limited HF/TB and FF/HF motion of SW was likely compensated for increased HX/FF DF. Although small angle variation in HF/TB EV and FF/HF SP during FW may have profound effects for foot kinetics. Higher HF/TB ER contributed to the FF push-off the ground while the center of mass (COM) progresses forward in FW, therefore accompanied by higher FF/HF abduction in FW. Increased peak vertical GRF in FW may affected by decreased stance duration time, the biomechanical mechanism maybe the change in vertical COM height and increase leg stiffness. Walking speed changes accompanied with modulated sagittal plane ankle moments to alter the braking GRF during loading response. The findings of foot kinematics, GRFs, and lower limb joint moments among healthy males may set a reference to distinguish abnormal and pathological gait patterns.


2006 ◽  
Vol 22 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Marcos Gutiérrez-Dávila ◽  
Jesús Dapena ◽  
José Campos

Pre-tensed and conventional starts that exert, respectively, large and small forces against the starting blocks in the “set” position (0.186 vs. 0.113 N per newton of body weight) were analyzed. The starts were videotaped, and the horizontal forces exerted on feet and hands were obtained from separate force plates. In the pre-tensed start, the legs received larger forward impulses early in the acceleration (0.18 vs. 0.15 N·s per kilogram of mass in the first 0.05 s), but the hands received larger backward impulses (–0.08 vs. –0.04 N·s·kg–1). At the end of the acceleration phase, there was no significant difference in horizontal velocity between the two types of start and only trivial differences in the center of mass positions. The results did not show a clear performance change when the feet were pressed hard against the blocks while waiting for the gun.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242215
Author(s):  
A. M. van Leeuwen ◽  
J. H. van Dieën ◽  
A. Daffertshofer ◽  
S. M. Bruijn

Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0242892
Author(s):  
Marcus Fraga Vieira ◽  
Fábio Barbosa Rodrigues ◽  
Alfredo de Oliveira Assis ◽  
Eduardo de Mendonça Mesquita ◽  
Thiago Santana Lemes ◽  
...  

The purpose of this study was to investigate the effects of different vertical positions of an asymmetrical load on the anticipatory postural adjustments phase of gait initiation. Sixty-eight college students (32 males, 36 females; age: 23.65 ± 3.21 years old; weight: 69.98 ± 8.15 kg; height: 1.74 ± 0.08 m) were enrolled in the study. Ground reaction forces and moments were collected using two force platforms. The participants completed three trials under each of the following random conditions: no-load (NL), waist uniformly distributed load (WUD), shoulder uniformly distributed load (SUD), waist stance foot load (WST), shoulder stance foot load (SST), waist swing foot load (WSW), and shoulder swing foot load (SSW). The paired Hotelling’s T-square test was used to compare the experimental conditions. The center of pressure (COP) time series were significantly different for the SUD vs. NL, SST vs. NL, WST vs. NL, and WSW vs. NL comparisons. Significant differences in COP time series were observed for all comparisons between waist vs. shoulder conditions. Overall, these differences were greater when the load was positioned at the shoulders. For the center of mass (COM) time series, significant differences were found for the WUD vs. NL and WSW vs. NL conditions. However, no differences were observed with the load positioned at the shoulders. In conclusion, only asymmetrical loading at the waist produced significant differences, and the higher the extra load, the greater the effects on COP behavior. By contrast, only minor changes were observed in COM behavior, suggesting that the changes in COP (the controller) behavior are adjustments to maintain the COM (controlled object) unaltered.


2000 ◽  
Author(s):  
Nader Arafati ◽  
Jean Yves Lazennec ◽  
Roger Ohayon

Abstract Human movement modeling has been the object of much research for the past 30 years. In these models the position of foot link was fixed on the ground. We propose to model the feet links as variable, since the position of foot pressure center changes from heel to toes. The ground reaction forces could also be analyzed in real time. We examined this model for some static postures. In standing anatomical position, the maximum articular forces are localized in hip and knee joints. In sagittal plane, the ground reaction force vectors are positioned nearly under ankle joints. The pathological postures like body with pes cavus or with global spine kyphosis increase the articular and muscular forces. In these cases, the position of ground reaction force vectors is moved toward the toes.


1999 ◽  
Vol 202 (12) ◽  
pp. 1603-1623 ◽  
Author(s):  
D.L. Jindrich ◽  
R.J. Full

Remarkable similarities in the vertical plane of forward motion exist among diverse legged runners. The effect of differences in posture may be reflected instead in maneuverability occurring in the horizontal plane. The maneuver we selected was turning during rapid running by the cockroach Blaberus discoidalis, a sprawled-postured arthropod. Executing a turn successfully involves at least two requirements. The animal's mean heading (the direction of the mean velocity vector of the center of mass) must be deflected, and the animal's body must rotate to keep the body axis aligned with the heading. We used two-dimensional kinematics to estimate net forces and rotational torques, and a photoelastic technique to estimate single-leg ground-reaction forces during turning. Stride frequencies and duty factors did not differ among legs during turning. The inside legs ended their steps closer to the body than during straight-ahead running, suggesting that they contributed to turning the body. However, the inside legs did not contribute forces or torques to turning the body, but actively pushed against the turn. Legs farther from the center of rotation on the outside of the turn contributed the majority of force and torque impulse which caused the body to turn. The dynamics of turning could not be predicted from kinematic measurements alone. To interpret the single-leg forces observed during turning, we have developed a general model that relates leg force production and leg position to turning performance. The model predicts that all legs could turn the body. Front legs can contribute most effectively to turning by producing forces nearly perpendicular to the heading, whereas middle and hind legs must produce additional force parallel to the heading. The force production necessary to turn required only minor alterations in the force hexapods generate during dynamically stable, straight-ahead locomotion. A consideration of maneuverability in the horizontal plane revealed that a sprawled-postured, hexapodal body design may provide exceptional performance with simplified control.


1990 ◽  
Vol 148 (1) ◽  
pp. 129-146 ◽  
Author(s):  
R. J. Full ◽  
M. S. Tu

Six-legged pedestrians, cockroaches, use a running gait during locomotion. The gait was defined by measuring ground reaction forces and mechanical energy fluctuations of the center of mass in Blaberus discoidalis (Serville) as they travelled over a miniature force platform. These six-legged animals produce horizontal and vertical ground-reaction patterns of force similar to those found in two-, four- and eight-legged runners. Lateral forces were less than half the vertical force fluctuations. At speeds between 0.08 and 0.66 ms-1, horizontal kinetic and gravitational potential energy changes were in phase. This pattern of energy fluctuation characterizes the bouncing gaits used by other animals that run. Blaberus discoidalis attained a maximum sustainable stride frequency of 13 Hz at 0.35 ms-1, the same speed and frequency predicted for a mammal of the same mass. Despite differences in body form, the mass-specific energy used to move the center of mass a given distance (0.9 J kg-1m-1) was the same for cockroaches, ghost crabs, mammals, and birds. Similarities in force production, stride frequency and mechanical energy production during locomotion suggest that there may be common design constraints in terrestrial locomotion which scale with body mass and are relatively independent of body form, leg number and skeletal type.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 63 ◽  
Author(s):  
Ilaria Mileti ◽  
Juri Taborri ◽  
Stefano Rossi ◽  
Zaccaria Del Prete ◽  
Marco Paoloni ◽  
...  

Maintaining balance stability while turning in a quasi-static stance and/or in dynamic motion requires proper recovery mechanisms to manage sudden center-of-mass displacement. Furthermore, falls during turning are among the main concerns of community-dwelling elderly population. This study investigates the effect of aging on reactive postural responses to continuous yaw perturbations on a cohort of 10 young adults (mean age 28 ± 3 years old) and 10 older adults (mean age 61 ± 4 years old). Subjects underwent external continuous yaw perturbations provided by the RotoBit1D platform. Different conditions of visual feedback (eyes opened and eyes closed) and perturbation intensity, i.e., sinusoidal rotations on the horizontal plane at different frequencies (0.2 Hz and 0.3 Hz), were applied. Kinematics of axial body segments was gathered using three inertial measurement units. In order to measure reactive postural responses, we measured body-absolute and joint absolute rotations, center-of-mass displacement, body sway, and inter-joint coordination. Older adults showed significant reduction in horizontal rotations of body segments and joints, as well as in center-of-mass displacement. Furthermore, older adults manifested a greater variability in reactive postural responses than younger adults. The abnormal reactive postural responses observed in older adults might contribute to the well-known age-related difficulty in dealing with balance control during turning.


Sign in / Sign up

Export Citation Format

Share Document