APPLICATION OF GAS-LIQUID INTENSIFICATION HEAT TRANSFER IN CLOSED COOLING SYSTEMS DURING SHIP MOVEMENT

Author(s):  
D.V. Sychev ◽  
V.V. Enivatov ◽  
I.K. Ovcharenko
2021 ◽  
pp. 014459872199800
Author(s):  
Xiaolong Wang ◽  
Wenke Zhang ◽  
Qingqing Li ◽  
Zhenqiang Wei ◽  
Wenjun Lei ◽  
...  

Radiant floor cooling systems are increasingly used in practice. The temperature distribution on the floor surface and inside the floor structure, especially the minimum and average temperature of floor surface, determines the thermal performance of radiant floor systems. A good temperature distribution of the floor structure is very important to prevent occupant discomfort and avoid possible condensation in summer cooling. In this study, based on the heat transfer model of the single-layer homogeneous floor structure when there is no internal heat radiation in the room, this paper proposes a heat transfer model of single-layer floor radiant cooling systems when the room has internal heat radiation. Using separation variable methods, an analytical solution was developed to estimate temperature distribution of typical radiant floor cooling systems with internal heat radiation, which can be used to calculate the minimum temperature and the average temperature of typical composite floor structure. The analytical solution was validated by experiments. The values of the measured experiments are in a good agreement with the calculations. The absolute error between the calculated and the measured floor surface temperatures was within 0.45°C. The maximum relative error was within 2.31%. Prove that this model can be accepted. The proposed method can be utilized to calculate the cooling capacity of a typical multi-layer composite floor and will be developed in the future study for design of a typical radiant floor cooling system.


2015 ◽  
Vol 82 (11) ◽  
Author(s):  
Ridho Irwansyah ◽  
Julian Massing ◽  
Christian Cierpka ◽  
Christian J. Kähler

AbstractThe progressing miniaturisation and increasing power demand of microelectronic devices require efficient cooling systems to avoid thermal damage. Future cooling systems have to be capable of dealing with heat loads of more than 200 W/cm


2018 ◽  
Vol 196 ◽  
pp. 04078
Author(s):  
Elena Malyavina ◽  
Anastasya Frolova

A large number of factors influence the economically feasible heat transfer resistance of the building enclosing structures. First of all, it is the cost of insulation and heat for the building heating in the cold season. As shown by studies, it is not enough for air-conditioned buildings. The result depends on the mode of the building operation in time and the heat load on the heating and cooling systems. Therefore, in addition to these significant factors of economic feasibility of the thermal protection level, there are the cost of electricity for the production of cold for cooling the building, the cost of the building heating and cooling systems and the cost of connection to power supply networks. The got result is important to convey to the professional community in a clear and compact form. In the present work the buildings of administrative and office purpose are considered, the working day of which lasts from 9-00 to 18-00 hours with different specific heat supply from 0 to 80 W/m2 on the estimated area during working hours. Generalization of the research results is made on the basis of specific heat protection characteristics of the building, which is a product of the overall heat transfer coefficient of the building and the compactness coefficient. The total heat transfer coefficient of the building characterizes the heat losses and the heat inflows to the building through the enclosing structures, and the compactness coefficient can serve as an indicator of the surface area of the building, which is covered with insulation. For these buildings provision has been made for identification of the areas of the total discounted cost combination for all of the above components and the specific heat protection characteristics of the building relating to the feasibility of the specified level of the thermal protection.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lena Maria Maier ◽  
Patrick Corhan ◽  
Alexander Barcza ◽  
Hugo A. Vieyra ◽  
Christian Vogel ◽  
...  

Abstract Today almost all refrigeration systems are based on compressors, which often require harmful refrigerants and typically reach 50% of the Carnot efficiency. Caloric cooling systems do not need any detrimental fluids and are expected to reach 60–70% of the Carnot limit. Current caloric systems utilise the active magnetocaloric regeneration principle and are quite cost-intensive, as it is challenging to achieve large cycle frequencies and thus high specific cooling powers with this principle. In this work, we present an alternative solution where the heat transfer from the heat exchangers to the caloric material is predicated on condensation and evaporation of a heat transfer fluid. Using thermal diodes, a directed heat flow is generated. Thereby we were able to build a cooling unit achieving a specific cooling power of 12.5 W g−1 at a cycle frequency of 20 Hz, which is one order of magnitude larger than the state-of-the-art.


2006 ◽  
Vol 128 (10) ◽  
pp. 1081-1092 ◽  
Author(s):  
Tunc Icoz ◽  
Yogesh Jaluria

Thermal management of electronic equipment is one of the major technical problems in the development of electronic systems that would meet increasing future demands for speed and reliability. It is necessary to design cooling systems for removing the heat dissipated by the electronic components efficiently and with minimal cost. Vortex promoters have important implications in cooling systems for electronic devices, since these are used to enhance heat transfer from the heating elements. In this paper, an application of dynamic data driven optimization methodology, which employs concurrent use of simulation and experiment, is presented for the design of the vortex promoter to maximize the heat removal rate from multiple protruding heat sources located in a channel, while keeping the pressure drop within reasonable limits. Concurrent use of computer simulation and experiment in real time is shown to be an effective tool for efficient engineering design and optimization. Numerical simulation can effectively be used for low flow rates and low heat inputs. However, with transition to oscillatory and turbulent flows at large values of these quantities, the problem becomes more involved and computational cost increases dramatically. Under these circumstances, experimental systems are used to determine the component temperatures for varying heat input and flow conditions. The design variables are taken as the Reynolds number and the shape and size of the vortex promoter. The problem is a multiobjective design optimization problem, where the objectives are maximizing the total heat transfer rate Q and minimizing the pressure drop ΔP. This multiobjective problem is converted to a single-objective problem by combining the two objective functions in the form of weighted sums.


2017 ◽  
Author(s):  
Nazih A. Bin-Abdun ◽  
Zuradzman M. Razlan ◽  
Shahriman A. B. ◽  
D. Hazry ◽  
Khairunizam Wan ◽  
...  

Author(s):  
Saurish Das ◽  
Hemant Punekar

In modern cooling systems the requirement of higher performance demands highest possible heat transfer rates, which can be achieved by controlled nucleate boiling. Boiling based cooling systems are gaining attention in several engineering applications as a potential replacement of conventional single-phase cooling system. Although the controlled nucleate boiling enhances the heat transfer, uncontrolled boiling may lead to Dry Out situation, adversely affecting the cooling performance and may also cause mechanical damage due to high thermal stresses. Designing boiling based cooling systems requires a modeling approach based on detailed fundamental understanding of this complex two-phase heat and mass transfer phenomenon. Such models can help analyze different cooling systems, detect potential design flaws and carry out design optimization. In the present work a new semi-mechanistic wall boiling model is developed within commercial CFD solver ANSYS FLUENT. A phase change mechanism and wall heat transfer augmentation due to nucleate boiling are implemented in mixture multiphase flow framework. The phase change phenomenon is modeled using mechanistic evaporation-condensation model. Enhancement of wall heat transfer due to nucleate boiling is captured using 1D empirical correlation, modified for 3D CFD environment. A new method is proposed to calculate the local suppression of nucleate boiling based on the flow velocity, and hence this model can be applied to any complex shaped coolant passage. For different wall superheat, the wall heat fluxes predicted by the present model are validated against experimental data, in which 50-50 volume mixture of aqueous ethylene glycol (a typical anti-freeze coolant mixture) is used as working fluid. The validation study is performed in ducts of different sizes and shapes with different inlet velocities, inlet sub-cooling and operating pressures. The results are in good agreement with the experiments. This model is applied to a typical automobile Exhaust Gas Recirculation (EGR) system to study boiling heat transfer phenomenon and the results are presented.


Sign in / Sign up

Export Citation Format

Share Document