scholarly journals Geophysical Investigation of a Fault Zone from Aeromagnetic Data over the Ageva Area of Okene Kogi State, Nigeria

2021 ◽  
pp. 33-43
Author(s):  
Ahmed Lawal ◽  
Adamu Abubakar ◽  
Avazi Victor

High-resolution aeromagnetic data over a part of Ageva fault zone in Nigeria have been analyzed with a view to estimate sedimentary thicknesses within the studied area. The data set of this study area, was subjected to various corrections and interpretation techniques. Regional residual correction was done and the noise level of the data was reduced via upward continuation to a height of 250 m thereby enhancing the reliability of the results obtained. Qualitative interpretation techniques which include: Second Vertical Derivative, Analytic Signal, Tilt derivative were used to delineate the trending pattern of the anomalies in the study area which are in the E-W, NE-SW, NW-SE, and N-S directions. The result suggests that fault zone within Ageva and Owo may be mineralized and also that the faults within Ageva and Ibilo extend by a quarter of their exposed length. The Werner solutions revealed that inferred faults within Owo and Ibilo may have relatively low susceptibilities as compared with others in the study area and the range of the depth extent of linear features is 401.5 m – 982.5 m.

2020 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Stephen Stephen Onyejiuwaka Ibe ◽  
Kevin Uche Iduma

The discovery of hydrocarbon in the areas bordering Afikpo Basin prompted the re-evaluation of the sedimentary thickness within the basin with high resolution geophysical data. Depth to magnetic sources, sediment thickness, basement topography and structures within it were investigated using spectral analysis, analytic signal and tilt derivative of aeromagnetic data. The results show that the depth to the basement varies between 1.52 and 3.15 km; depth to intermediate magnetic anomaly sources ranges from 0.40 to 1.05 km and depth to the shallow sources varies from 0.10 to 0.34 km. Structures within the basin predominantly have NE-SW trend and the boundary between Afikpo Basin and Southwestern Basement Massif is characterised by NE-SW trending dykes with the longest dyke extending from Amasiri to Abba Omege. The results show that the basin is greatly undulated and the deformation that led to its undulation resulted in the formation of structures which could serve as traps for hydrocarbon accumulation. Sediment thickness greater than 2.3 km associated with some locations within the basin prompted the classification of the places as viable for hydrocarbon formation, if other conditions necessary for its generation are favourable. These places were recommended for further studies for hydrocarbon prospecting on the bases of their sediment structural complexities and thicknesses.  


Author(s):  
M. D. Tawey ◽  
D. U. Alhassan ◽  
A. A. Adetona ◽  
K. A. Salako ◽  
A. A. Rafiu ◽  
...  

Assessment of the structures and solid minerals was carryout to investigate subsurface structural characteristics and mineralization potential zones within part of north-central Nigeria. The residual magnetic intensity data of the area was reduced to magnetic pole after which several source edge detection/interpretation with depth determination techniques including, analytic signal; tilt derivative; first and second vertical derivatives and Euler deconvolution were applied to the aeromagnetic data. From the analytic signal map, three magnetic zones were delineated. These are: low to relatively low magnetic zone (LM) with amplitude range from 0.003 to 0.009, moderate magnetic zone (MM) with amplitude 0.009 to 0.106 and those with amplitudes above 0.106 were products of later magmatic intrusions into host with fractures, faults and joints. Tilt derivative helped in delineating location and extent of edges of causative sources while Euler deconvolution helps in determination of boundary, depth and geometry of the structures. From first vertical derivative map, structures were found to have high lineament density around the central portion of the area and span toward the western end of the map were delineated. The lineaments mapped trending in the ENE-WSW followed by WNW-ESE with some NE-SW, NNE-SSW and NNW-SSE trends. The second vertical derivative (SVD) map also helped in delineating structures and possible mineralization zones that are pronounced within the study area, around high analytic signal zones. Delineated possible and favorable mineralization zones from second vertical derivative map correlate with portion of the study area with rocks showing high analytic signal amplitude suggesting the rocks to be of later magmatic intrusions where mineralization fluids solidify within the host rocks.


2021 ◽  
Author(s):  
Ake Fagereng ◽  
Adam Beall

<p>Current conceptual fault models define a seismogenic zone, where earthquakes nucleate, characterised by velocity-weakening fault rocks in a dominantly frictional regime. The base of the seismogenic zone is commonly inferred to coincide with a thermally controlled onset of velocity-strengthening slip or distributed viscous deformation. The top of the seismogenic zone may be determined by low-temperature diagenetic processes and the state of consolidation and alteration. Overall, the seismogenic zone is therefore described as bounded by transitions in frictional and rheological properties. These properties are relatively well-determined for monomineralic systems and simple, planar geometries; but, many exceptions, including deep earthquakes, slow slip, and shallow creep, imply processes involving compositional, structural, or environmental heterogeneities. We explore how such heterogeneities may alter the extent of the seismogenic zone.</p><p> </p><p>We consider mixed viscous-frictional deformation and suggest a simple rule of thumb to estimate the role of heterogeneities by a combination of the viscosity contrast within the fault, and the ratio between the bulk shear stress and the yield strength of the strongest fault zone component. In this model, slip behaviour can change dynamically in response to stress and strength variations with depth and time. We quantify the model numerically, and illustrate the idea with a few field-based examples: 1) earthquakes within the viscous regime, deeper than the thermally-controlled seismogenic zone, can be triggered by an increase in the ratio of shear stress to yield strength, either by increased fluid pressure or increased local stress; 2) there is commonly a depth range of transitional behaviour at the base of the seismogenic zone – the thickness of this zone increases markedly with increased viscosity contrast within the fault zone; and 3) fault zone weakening by phyllosilicate growth and foliation development increases viscosity ratio and decreases bulk shear stress, leading to efficient, stable, fault zone creep. These examples are not new interpretations or observations, but given the substantial complexity of heterogeneous fault zones, we suggest that a simplified, conceptual model based on basic strength and stress parameters is useful in describing and assessing the effect of heterogeneities on fault slip behaviour.         </p>


2021 ◽  
Vol 25 (4) ◽  
pp. 585-590
Author(s):  
H. Musa ◽  
N.E. Bassey ◽  
R. Bello

The study of high-resolution aeromagnetic data was carried out over the Gongola basin, upper Benue trough, northeastern Nigeria, for analytic signal depth determination. Total intensity magnetic map obtained from the data using the Oasis Montaj TM programming software was used to get the residual map by polynomial fitting, from where the analytic signal was obtained with the use of anomaly width at half the amplitude (X1/2). This was used to carry out depth estimations over the study area. The results showed that it peaks over the magnetic structure with local maxima over its edges (boundaries or contact), and the amplitude is simply related to magnetization, likewise results also showed that the depth estimates were in the range of 1.2 to 5.9 km and were calculated for contact, dyke/sill and horizontal cylinder respectively. The lowest values are from DD profiles, while the highs are from AA profiles. This work is important in identifying dykes, contacts and intrusives over an area.


Geophysics ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. L17-L20 ◽  
Author(s):  
G. R. Cooper

Horizontal and vertical gradients, and filters based on them (such as the analytic signal), are used routinely to enhance detail in aeromagnetic data. However, when the data contain anomalies with a large range of amplitudes, the filtered data also will contain large and small amplitude responses, making the latter hard to see. This study suggests balancing the analytic signal amplitude (sometimes called the total gradient) by the use of its orthogonal Hilbert transforms, and shows that the balanced profile curvature can be an effective method of enhancing potential-field data. Source code is available from the author on request.


Geophysics ◽  
1970 ◽  
Vol 35 (2) ◽  
pp. 293-302 ◽  
Author(s):  
A. Spector ◽  
F. S. Grant

A mathematical basis for the application of power spectrum analysis to aeromagnetic map interpretation is developed. An ensemble of blocks of varying depth, width, thickness, and magnetization is considered as a statistical model. With the use of the fundamental postulate of statistical mechanics, a formula which can be used to analyze the power spectrum of an aeromagnetic map is developed. The influences of horizontal size, depth, thickness, and depth extent of the blocks on the shape of the power spectrum are assessed. Examples which include power spectra of maps from Canada and Central America demonstrate the application of the approach. In the cases studied a double ensemble of blocks appears to best explain the observed power spectrum characteristics.


2003 ◽  
Author(s):  
J.C. Wynn ◽  
Floyd Gray ◽  
T.E. Nordstrom ◽  
Dexin Liu ◽  
E.V. Reed ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. SQ1-SQ13
Author(s):  
Christoph G. Eichkitz ◽  
Sarah Schneider ◽  
Andreas B. Hölker ◽  
Philip Birkhäuser ◽  
Herfried Madritsch

The identification and characterization of tectonic faults in the subsurface represent key aspects of geologic exploration activities across the world. We have evaluated the impact of alternative seismic time imaging methods on initial subsurface fault mapping in three dimensions in the form of a case study situated in the most external foreland of the European Central Alps (the northernmost Molasse Basin). Four different seismic amplitude volumes of one and the same 3D seismic data set, differing in imaging technologies and parameterizations applied, were considered for the interpretation of a fault zone dissecting a Mesozoic sedimentary sequence that is characterized by a pronounced mechanical stratigraphy and has witnessed a multiphase tectonic evolution. For this purpose, we interpreted each seismic amplitude volume separately. In addition, we computed a series of seismic attributes individually for each volume. Comparison of the different data interpretations revealed consistent results concerning the mapping of the seismic marker horizons and main fault segments. Deviations concern the apparent degree of vertical and lateral fault zone segmentation and the occurrence of small-scale fault strands that may be regarded as important fault kinematic indicators. The compilation of all fault interpretations in map form allows the critical assessment of the robustness of the initial seismic fault mapping, highlighting well-constrained from poorly defined fault zone elements. We conclude that the consideration of multiple seismic processing products for subsurface fault mapping is advisable to evaluate general imaging uncertainties and potentially guide the development of fault zone model variants to tackle previously discussed aspects of conceptual interpretation uncertainties.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. JM15-JM24 ◽  
Author(s):  
Tomas Naprstek ◽  
Richard S. Smith

When aeromagnetic data are interpolated to make a gridded image, thin linear features can result in “boudinage” or “string of beads” artifacts if the anomalies are at acute angles to the traverse lines. These artifacts are due to the undersampling of these types of features across the flight lines, making it difficult for most interpolation methods to effectively maintain the linear nature of the features without user guidance. The magnetic responses of dikes and dike swarms are typical examples of the type of geologic feature that can cause these artifacts; thus, these features are often difficult to interpret. Many interpretation methods use various enhancements of the gridded data, such as horizontal or vertical derivatives, and these artifacts are often exacerbated by the processing. Therefore, interpolation methods that are free of these artifacts are necessary for advanced interpretation and analysis of thin, linear features. We have developed a new interpolation method that iteratively enhances linear trends across flight lines, ensuring that linear features are evident on the interpolated grid. Using a Taylor derivative expansion and structure tensors allows the method to continually analyze and interpolate data along anisotropic trends, while honoring the original flight line data. We applied this method to synthetic data and field data, which both show improvement over standard bidirectional gridding, minimum curvature, and kriging methods for interpolating thin, linear features at acute angles to the flight lines. These improved results are also apparent in the vertical derivative enhancement of field data. The source code for this method has been made publicly available.


Sign in / Sign up

Export Citation Format

Share Document