scholarly journals Control efficiency improvement of an electro-hydraulic winch

Author(s):  
I.C. Duțu ◽  
C. Frățilă ◽  
T. Axinte ◽  
M.G. Munteanu ◽  
L. Calancea ◽  
...  

The paper presents a study regarding electro-hydraulic control systems for drive winches, a structural part of LARS (Launch and Recovery Systems). In the Introduction section of the paper, the authors present the domains of the research vessel. Furthermore, there is presented the importance of launch and recovery systems (LARS) and drive winches on the deck of a research vessel. The launch and recovery systems (LARS) using drive winches are installed on the stern of the research vessel. Further in the paper, the authors present the results of studying three simplified systems that use electric, hydraulic and electro-hydraulic driving solutions. Furthermore, there are presented comparative advantages of using this three types of drive winches. At the end of the paper, the authors perform an analysis of the electro-hydraulic systems for the drive winch, using a modelling and simulation software. Each schematic is presented along with its components. Moreover, the authors mention that all the schematics presented in this paper are modelled using FluidSim software from FESTO. In this case, only three mathematic relations are used in the paper: the Cauchy momentum (convective form), the incompressible Euler relations and the pressure losses in the hydraulic and electro-hydraulic drive winch.

2018 ◽  
Vol 196 ◽  
pp. 04033 ◽  
Author(s):  
Konstantin Galitskov ◽  
Stanislav Galitskov ◽  
Ivan Dudanov

Practical implementation of the program controlling the movement of the excavator’s working tool (including the use of satellite navigation system) imposes stringent requirements on the dynamic and static accuracy of automatic control systems for the hydraulic excavator’s operating mechanisms, in conditions of non-stationary parameters of these mechanisms as control objects. The authors describe the effective solution of this problem by implementing structural synthesis of each servo hydraulic drive as a multi-loop system with one measured coordinate (MLSOMC). The EO-4121 excavator with four hydraulic drives (rotary platform, boom, arm and ladle) was used as an example to demonstrate that the implementation of three circuits in the multi-loop system with one measured coordinate in each of these drives with typical PID-controllers allows to ensure the robustness of the ACS for known uncertainties, as well as the required rates of control quality in static and dynamic modes.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
LJubiša Dubonjić ◽  
Novak Nedić ◽  
Vojislav Filipović ◽  
Dragan Pršić

The paper proposes a procedure for design of PI controllers for hydraulic systems with long transmission lines which are described by models of high order. Design is based on the combination of the IE criterion and engineering specifications (settling time and relative stability) as well as on the application ofD-decomposition. In comparison with some known results, the method is of graphical character, and it is very simple (solving nonlinear algebraic equations is eliminated). The paper presents the algorithm of software procedure for design of the controller. The method is compared with other methods at the level of simulation, and its superiority is shown. By applying the Nyquist criterion, it is shown that the method possesses robustness in relation to non modelled dynamics.


2021 ◽  
Author(s):  
Christian Petersen ◽  
Ola Strand ◽  
Espen Johansen ◽  
Dag Almar Hansen ◽  
Dag Ketil Fredheim ◽  
...  

Abstract Pressure control have been going through steps of evolution. In the highlight of safety, reliability and control, the systems have been sturdy withstanding massive pressure and environmental impact to last the time of estimated life of well. Design have been emphasizing on sturdiness rather than intelligence and autonomy. Time moves on, sophistication levels rise in all parts of our industry. Sustainability and lower environmental impact of solutions grow from the young into business planning and democratic policies. Control lines of hydraulic systems posed risks to the environment as well as being costly in structure and maintenance. Condition monitoring helped ensure better maintenance planning and lowered the risk of breakdown, but still left a lot to be desired reaching for self-contained, self learning systems with low installation and maintenance costs, yet the safest approach. The next steps were taken towards electrification and digitization of pressure control systems, making short and undetermined strides over almost two decades. Still, the standards are not following the pace of technological progress. And when someone dares to pilot or demonstrate modern technology applied, the installations and operational procedures of the systems still need expensive distributed lines of power, of signals and control systems to ensure a swift and safe operation. The fly-by-wire principle applied in oil & gas is the operate-by-costly-technology-and-environmental-impact-lines. With the introduction of new and breaking technology in energy harvesting and storage, the playing field opens up towards fully automated systems with no need for expensive power lines or hydraulic control lines. The safety will be taken care of also off-grid, fully digitized. Should cabling of instrument signals be damaged, the system of tomorrow will still be up to par with the Safety Integrity Levels needed. New super-capacitors with an extra dense storage capacity being developed in partnership between the industry and the University of southeast Norway combined with an extremely low energy consuming actuation system with the fastest failsafe mechanism ever will ensure safety in all modes of operation, even with all lines down or consumed by flames. The paper aims to show how the technology works and underline why it will take a place in the future of well control and production.


2019 ◽  
Vol 19 (1) ◽  
pp. 13-23
Author(s):  
V. S. Sidorenko ◽  
V. I. Grishchenko ◽  
S. V. Rakulenko ◽  
M. S. Poleshkin ◽  
D. D. Dymochkin

Introduction. An adaptive hydraulic drive of the tool advance in a mobile drilling machine is studied on the example of the URB-2.5 installation. A typical technological cycle of the mobile drilling machine is considered; the performance criteria are defined. An original design of the adaptive hydraulic drive is proposed on the basis of the analysis. Adaptation of the hydraulic drive of the tool advance is carried out using an adjustable volumetric hydraulic motor with a hydraulic control circuit under discontinuous loads on the tool during the drilling process.Materials and Methods. Through a preliminary computational experiment in the Matlab Simulink program, the following parameters of the control loop devices were determined: a hydromechanical sensor and a hydraulically controlled valve, on the basis of which the experimental setup was implemented. The performed multifactor experiment allowed identifying the processes in the original hydraulic control circuit of the hydraulic motor under various modes of tool loading.Research Results. The kinematic and power characteristics of the hydromechanical system of a mobile drilling rig, the hydraulic control effect on the settings of the hydraulic control circuit devices were obtained and determined. The results enabled to specify the rational ranges of the hydromechanical system operation for a typical work cycle.Discussion and Conclusions. The results obtained can be used to create hydraulic systems of new drilling machines with various characteristics. The application of the developed techniques of research and processing of their results will reduce the time and costs involved in designing adaptive hydraulic systems for mobile technological machines, creating prototypes and conducting commissioning procedures.


1998 ◽  
Vol 10 (6) ◽  
pp. 494-498
Author(s):  
Takayoshi Muto ◽  
◽  
Junji Fukumori ◽  
Akio Seko ◽  
Hironao Yamada

We developed simulation software for hydraulic control systems enabling the operator to simulate dynamic system performance without special knowledge of software or control engineering. The program was for use on conventional personal computers. Simulation proceeds with each operation very simply based on system block diagram representation. A GUI enabled almost all simulation operations to be done using display windows. The program simulates fluid line elements, nonlinear elements, and discrete time control.


2020 ◽  
pp. 77-78

The use of ultra-high molecular weight polyethylene (UHMW PE) for the manufacture of various parts, in particular cuffs for hydraulic drives, is proposed. The properties and advantages of UHMW PE in comparison with other polyethylene materials are considered. Keywords ultra-high molecular weight polyethylene, hydraulic pump, hydraulic motor, hydraulic control valve, hydraulic oil, low temperature. [email protected]


2021 ◽  
Vol 13 (13) ◽  
pp. 7320
Author(s):  
Tobias Pietrzyk ◽  
Markus Georgi ◽  
Sabine Schlittmeier ◽  
Katharina Schmitz

In this study, sound measurements of an axial piston pump and an internal gear pump were performed and subjective pleasantness judgements were collected in listening tests (to analyze the subjective pleasantness), which could be seen as the inverse of the subjective annoyance of hydraulic drives. Pumps are the dominant sound source in hydraulic systems. The noise generation of displacement machines is subject of current research. However, in this research only the sound pressure level (SPL) was considered. Psychoacoustic metrics give new possibilities to analyze the sound of hydraulic drive technology and to improve the sound quality. For this purpose, instrumental measurements of the acoustic and psychoacoustic parameters are evaluated for both pump types. The recorded sounds are played back to the participants in listening tests. Participants evaluate them regarding the subjective pleasantness by means of paired comparison, which is an indirect scaling method. The dependence of the subjective pleasantness on speed and pressure was analyzed for both pump types. Different regression analyses were carried out to predict the subjectively perceived pleasantness or annoyance of the pumps. Results show that a lower speed is the decisive operating parameter for reducing both the SPL and the annoyance of a hydraulic pump.


Sign in / Sign up

Export Citation Format

Share Document