Analyzing metaheuristic methods to build an optimal composite foot prosthesis insole

Author(s):  
Álvaro Gustavo Rodríguez

This paper uses metaheuristic algorithms to develop and optimize composite materials. To calculate the characteristics that allow the planned item to withstand particular loads, ABC and Differential Evolution algorithms are utilized. One of the key challenges in these designs is determining the piece's thickness. Designing a carbon fibre insole for Latin American users will improve the design process by generating functional solutions that are feasible to manufacture and in less time than traditional design methods. The results reported in this work demonstrate that a functional design may be developed, validated by finite element method, with minimal material waste and in a reasonable period.

2021 ◽  
Vol 11 (6) ◽  
pp. 2703
Author(s):  
Warisa Wisittipanich ◽  
Khamphe Phoungthong ◽  
Chanin Srisuwannapa ◽  
Adirek Baisukhan ◽  
Nuttachat Wisittipanit

Generally, transportation costs account for approximately half of the total operation expenses of a logistics firm. Therefore, any effort to optimize the planning of vehicle routing would be substantially beneficial to the company. This study focuses on a postman delivery routing problem of the Chiang Rai post office, located in the Chiang Rai province of Thailand. In this study, two metaheuristic methods—particle swarm optimization (PSO) and differential evolution (DE)—were applied with particular solution representation to find delivery routings with minimum travel distances. The performances of PSO and DE were compared along with those from current practices. The results showed that PSO and DE clearly outperformed the actual routing of the current practices in all the operational days examined. Moreover, DE performances were notably superior to those of PSO.


1973 ◽  
Vol 40 (3) ◽  
pp. 785-790 ◽  
Author(s):  
J. Tirosh

A detailed study of the plasticity and crack-tip blunting effects on toughening materials with rectilinear anisotropy is presented. The most important results are the prediction of the extent of plastic zone and the nature of stress distribution produced by the blunting effect in the tensile mode. The analysis was confirmed experimentally and numerically (finite-element method) on a unidirectional fiber-reinforced composite.


1967 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
M J Iremonger ◽  
W G Wood

An investigation has been made into the suitability of the finite-element method for studying the stresses in composite materials and the case of a single broken fibre in a matrix has been examined. It has been found that high stress concentrations occur in the region of the fibre break which increase with decreasing end gap and would cause matrix yielding or fracture at comparatively low overall stresses. When the end gap is not void but filled with matrix much lower stress concentrations occur which, below a certain value of end gap, actually decrease as the gap is made smaller.


Author(s):  
Andrew W. Hulton ◽  
Paul V. Cavallaro

Fiber reinforced polymer (FRP) composites have been used as a substitute for more conventional materials in a wide range of applications, including in the aerospace, defense, and auto industries. Due to the widespread availability of measurement techniques, experimental testing of composite materials has outpaced the computational modeling ability of such complicated materials. With advancements in computational physics-based modeling (PBM) such as the finite element method (FEM), strides can be made to reduce the efforts required in building and testing future composite structures. In this work, the extended finite element method (XFEM) is implemented to model fracture of composite materials under quasistatic loading. XFEM is applied to a three-dimensional (3D) computational model of a carbon fiber/epoxy composite cylinder, in half symmetry, that is subjected to lateral compression between two flat plates. Independent material properties are instituted for each composite layer, depending on individual layer orientation. The crack path produced by the analytical results is compared to experimental testing of lateral compression of a composite cylinder. Fracture site initiation and growth path are consistent in both the experimental and computational results.


2009 ◽  
Vol 424 ◽  
pp. 113-119 ◽  
Author(s):  
Jerome Muehlhause ◽  
Sven Gall ◽  
Sören Müller

Extrusion of composite materials can offer big advantages. In this work the manufacturing of a hybrid metal profile in a single production step was investigated. A porthole die was used, thus producing profiles with extrusion seams. Along the seams a material mix up was visible. The extrusion process was simulated with the Finite Element Method to investigate the material flow in die and welding chamber in order to understand the cause for the defects at the seams.


Sign in / Sign up

Export Citation Format

Share Document