scholarly journals Applying Genetic Algorithm to Optimization Second-Order Bandpass MGMFB Filter

2020 ◽  
Vol 28 (4) ◽  
Author(s):  
Maad Mohsin Mijwil ◽  
Rana Ali Abttan

In this paper, we have applied the genetic algorithm to the selection of the true values for RC (resistors/capacitors) as an essential role in the development of analogue active filters. The classic method of incorporating passive elements is a complex situation and can attend to errors. In order to reduce the frequency of errors and the human effort, evolutionary optimization methods are employed to select the RC values. In this study, Genetic algorithm (GA) is proposed to optimize the second-order active filter. It must find the values of the passive elements RC to get a filter configuration that reduces the sensitivities to variations as well as reduces design errors less than a defined height value, concerning certain specifications. The optimization problem which is one of the problems that must be solved by GA is a multi-objective optimization problem (MOOP). GA was carried out taking into account two possible situations about the values that resistors and capacitors could adopt. The obtained experimental results show that GA can be used to obtain filter configurations that meet the specified standard.

2019 ◽  
Vol 134 ◽  
pp. 01007
Author(s):  
Anna Tailakova ◽  
Alexander Pimonov

Previously developed by the authors of the optimization model for calculating the construction of non-rigid pavement of public roads is proposed to be used for the calculation of the construction of pavement technological career roads. The article describes the optimization methods and algorithms for calculating the construction of pavement. Possibilities of using methods of coordinate-wise descent, multi-start, dynamic programming for the selection of the optimal construction of pavement are presented. Application of genetic algorithms for the decision of an optimization problem of calculation of a construction of pavements on the basis of comparison of their efficiency with efficiency of search methods is proved. Described results of computational experiment of selection of genetic algorithm operators to reduce the volume of calculations and ensure the stability of the results.


2014 ◽  
Vol 494-495 ◽  
pp. 1715-1718
Author(s):  
Gui Li Yuan ◽  
Tong Yu ◽  
Juan Du

The classic multi-objective optimization method of sub goals multiplication and division theory is applied to solve optimal load distribution problem in thermal power plants. A multi-objective optimization model is built which comprehensively reflects the economy, environmental protection and speediness. The proposed model effectively avoids the target normalization and weights determination existing in the process of changing the multi-objective optimization problem into a single objective optimization problem. Since genetic algorithm (GA) has the drawback of falling into local optimum, adaptive immune vaccines algorithm (AIVA) is applied to optimize the constructed model and the results are compared with that optimized by genetic algorithm. Simulation shows this method can complete multi-objective optimal load distribution quickly and efficiently.


2019 ◽  
Vol 7 (12) ◽  
pp. 429
Author(s):  
Jaebum Kim ◽  
O Soon Kwon ◽  
Nguyen Le Dang Hai ◽  
Jin Hwan Ko

In this study, a genetic algorithm (GA) with an analytic model is adopted to conduct multi-objective optimization for design of an underwater chain trencher. The optimization problem is defined as minimizing a product of the chain power and weight subject to the uniaxial compressive strength, coefficient of traction, bar length (L), nose radius (R) and ratio of the chipping depth over the spacing (l/S), of which the ranges are determined based on the specifications of commercial trenchers satisfying established performance requirements and previous parametric studies. It is found that an optimal design of the GA was obtained with L and l/S close to their low bound and R far from its low bound while that of a simple parametric analysis was acquired with the three parameters close to their low bounds. Moreover, in the most severe soft rock and traction conditions, the power and weight in the optimal design obtained by the GA are turn to be within the feasible ranges of targeted commercial trenchers.


2015 ◽  
Vol 11 (9) ◽  
pp. 4 ◽  
Author(s):  
Wei Liu ◽  
Yongfeng Cui ◽  
Zhongyuan Zhao

The objective of this paper is focuses on route optimization, for a given wireless sensor network. We detail the significance of route optimization problem and the corresponding mathematical model. After analyzing the complex multi-objective optimization problem, Ant Colony Optimization (ACO) algorithm was introduced to search the best route. Inspired by Genetic Algorithm (GA), we embed two operations into ACO to refine it. First, every ant after achieving sink will be regarded as an individual such as that in GA. The crossover operation will be applied and then, the generated new ants will replace the weaker parents. Second, we designed a mutation operation for ants selecting next nodes to visit. Experimental results demonstrate that the proposed combination algorithm has significant enhancements than both GA and ACO. The lifetime of WSN can be extended and the coverage speed can be accelerated.


2014 ◽  
Vol 962-965 ◽  
pp. 2903-2908
Author(s):  
Yun Lian Liu ◽  
Wen Li ◽  
Tie Bin Wu ◽  
Yun Cheng ◽  
Tao Yun Zhou ◽  
...  

An improved multi-objective genetic algorithm is proposed to solve constrained optimization problems. The constrained optimization problem is converted into a multi-objective optimization problem. In the evolution process, our algorithm is based on multi-objective technique, where the population is divided into dominated and non-dominated subpopulation. Arithmetic crossover operator is utilized for the randomly selected individuals from dominated and non-dominated subpopulation, respectively. The crossover operator can lead gradually the individuals to the extreme point and improve the local searching ability. Diversity mutation operator is introduced for non-dominated subpopulation. Through testing the performance of the proposed algorithm on 3 benchmark functions and 1 engineering optimization problems, and comparing with other meta-heuristics, the result of simulation shows that the proposed algorithm has great ability of global search. Keywords: multi-objective optimization;genetic algorithm;constrained optimization problem;engineering application


2011 ◽  
Vol 48-49 ◽  
pp. 314-317
Author(s):  
Di Wu ◽  
Sheng Yao Yang ◽  
J.C. Liu

The performance optimization of cognitive radio is a multi-objective optimization problem. Existing genetic algorithms are difficult to assign the weight of each objective when the linear weighting method is used to simplify the multi-objective optimization problem into a single objective optimization problem. In this paper, we propose a new cognitive decision engine algorithm using multi-objective genetic algorithm with population adaptation. A multicarrier system is used for simulation analysis, and experimental results show that the proposed algorithm is effective and meets the real-time requirement.


2013 ◽  
Vol 732-733 ◽  
pp. 402-406
Author(s):  
Duan Yi Wang

The weight minimum and drive efficiency maxima1 of screw conveyor were considered as double optimizing objects in this paper. The mathematical model of the screw conveyor has been established based on the theory of the machine design, and the genetic algorithm was adopted to solving the multi-objective optimization problem. The results show that the mass of spiral shaft reduces 13.6 percent, and the drive efficiency increases 6.4 percent because of the optimal design based on genetic algorithm. The genetic algorithm application on the screw conveyor optimized design can provided the basis for designing the screw conveyor.


Sign in / Sign up

Export Citation Format

Share Document