scholarly journals A novel two-degrees-of-freedom piezoelectric energy harvester

2012 ◽  
Vol 24 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Hao Wu ◽  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee Kiong Soh

Energy harvesting from ambient vibrations using piezoelectric effect is a promising alternative solution for powering small electronics such as wireless sensors. A conventional piezoelectric energy harvester usually consists of a cantilevered beam with a proof mass at its free end. For such a device, the second resonance of the piezoelectric energy harvester is usually ignored because of its high frequency as well as low response level compared to the first resonance. Hence, only the first mode has been frequently exploited for energy harvesting in the reported literature. In this article, a novel compact piezoelectric energy harvester using two vibration modes has been developed. The harvester comprises one main cantilever beam and an inner secondary cantilever beam, each of which is bonded with piezoelectric transducers. By varying the proof masses, the first two resonant frequencies of the harvester can be tuned close enough to achieve useful wide bandwidth. Meanwhile, this compact design efficiently utilizes the cantilever beam by generating significant power output from both the main and secondary beams. An experiment and simulation were carried out to validate the design concept. The results show that the proposed novel piezoelectric energy harvester is more adaptive and functional in practical vibrational circumstances.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


Author(s):  
Andrew Truitt ◽  
S. Nima Mahmoodi

Piezoelectric energy harvesters have recently captured a lot of attention in research and technology. They employ the piezoelectric effect, which is the separation of charge within a material as a result of an applied strain, to turn what would otherwise be wasted energy into usable energy. This energy can then be used to support remote sensing systems, batteries, and other types of wireless MEMS devices. Such self powered systems are particularly attractive where hardwiring may not be feasible or numerous battery sources unreasonable. The source of excitation for these systems can include direct actuation, natural or mechanical vibrations, or fluid energy (aerodynamic or hydrodynamic). Fluid based energy harvesting is increasingly pursued due to the ubiquitous nature of the excitation source as well as the strong correlation with other types of excitation. Vortex-induced vibrations as well as vibrations induced by bluff bodies have been investigated to determine potential gains. The shape and size of these bluff bodies has been modeled in order to achieve the maxim power potential of the system. Other studies have focused on aeroelastic fluttering which relies on the natural frequency of two structural modes being achieved through aerodynamic forces. Rather than a single degree of freedom, as seen in the VIV approach, aeroelastic flutter requires two degrees of freedom to induce its vibrational state. This has been modeled through a wing section attached to a cantilevered beam via a revolute joint. To accurately model the behavior of these systems several types of dampening must be considered. Fluid flow excitation introduces the component of dampening via fluid dynamics in addition to structural dampening and electrical dampening from the piezoelectrics themselves. Air flow speed modifies the aerodynamic dampening and it has been shown that at the flutterer boundary the aerodynamic dampening dissipates while the oscillations remain. However, such a system state exhibits a decaying power output due to the shunt dampening effect of the power generation itself. Research in energy harvesting is quickly progressing but much has yet to be discovered. The focus of this paper will be fluid as a source of excitation and the development that has followed thus far. Configurations and applications of previous works will be examined followed by suggestions of new research works to move forward in the field.


2019 ◽  
Vol 8 (4) ◽  
pp. 6332-6337

This paper reviews the piezoelectric energy harvesting from mechanical vibration. The recent development in the microelectronic devices and wireless sensor networks (WSNs) requires continuous power source for better performance. Many researchers have been done to develop a permanent portable power source for microelectronic devices. Micro energy harvesting (MEH) consists of two basic elements; freely available energy and transducer. Energy is everywhere around us in different forms. The energy conversion ability of piezoelectric energy harvester is high among different MEH techniques. A cantilever type piezoelectric energy harvester under different shapes is mostly studied in the last few years. The output of piezoelectric harvester depends upon the deflection produced, more deflection led to more electrical output. The deflection in cantilever beam under different shapes is different. This review paper presents a comparison of different piezoelectric cantilever beam shapes and output generated analyzed in the last decade.


2012 ◽  
Vol 24 (2) ◽  
pp. 180-193 ◽  
Author(s):  
Yu-Yin Chen ◽  
Dejan Vasic ◽  
Yuan-Ping Liu ◽  
François Costa

In this article, a piezoelectric energy harvesting device comprises a bistable vibrating cantilever beam and a switching-type interface circuit (synchronized switching harvesting on an inductor) is proposed, and the resulting performance is compared to the traditional linear technique. It was known that the synchronized switching techniques increase efficiently the output power of the piezoelectric energy harvester for low-coupled structures. However, the traditional piezoelectric energy harvester based on a cantilever beam is only efficient at resonance. To broaden the available bandwidth, a bistable nonlinear technique was proposed. In this article, the bistable technique and synchronized switching harvesting on an inductor interface are combined together to accomplish a more efficient broadband piezoelectric energy harvester. The power flow and work cycles are adopted to simplify the analysis of the switching techniques and then summarize the increasing performance of the nonlinear piezoelectric harvester. Finally, simulation results and experimental validations show that the proposed integrated device owns larger bandwidth and collects more harvested energy.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jianjun Liu ◽  
Xianghua Chen ◽  
Yujie Chen ◽  
Hong Zuo ◽  
Qun Li

Piezoelectric cantilever beams, which have simple structures and excellent mechanical/electrical coupling characteristics, are widely applied in energy harvesting. When the piezoelectric cantilever beam is in a wind field, we should consider not only the influence of the wind field on piezoelectric beam but also the electromechanical coupling effect on it. In this paper, we design and test a wind-induced flag-swing piezoelectric energy harvester (PEH). The piezoelectric cantilever beam may vibrate in the wind field by affixing a flexible ribbon to the free end as the windward structure. To fulfill the goal of producing electricity, the flexible ribbon can swing the piezoelectric cantilever in a wind-induced unstable condition. The experimental findings demonstrate that the flag-swing PEH performs well in energy harvesting when the wind field is excited. When the wind speed is 15 m/s, the peak-to-peak output AC voltage may reach 13.88 V. In addition, the voltage at both ends of the closed-loop circuit’s external resistance is examined. The maximum electric power of the PEH may reach 43.4 μW with an external resistance of 650 kΩ. After passing through the AC-DC conversion circuit, the flag-swing PEH has a steady DC voltage output of 1.67 V. The proposed energy harvester transforms wind energy from a wind farm into electrical energy for supply to low-power electronic devices, allowing for the creation and use of green energy to efficiently address the issue of inadequate energy.


2022 ◽  
Vol 30 (1) ◽  
pp. 605-619
Author(s):  
Khairul Azman Ahmad ◽  
Noramalina Abdullah ◽  
Mohamad Faizal Abd Rahman ◽  
Muhammad Khusairi Osman ◽  
Rozan Boudville

Piezoelectric energy harvesting is the process of extracting electrical energy using energy harvester devices. Any stress in the piezoelectric material will generate induced voltage. Previous energy harvester device with stiff cantilever beam was generated low harvested energy. A flexural piezoelectric energy harvester is proposed to improve the generated harvesting energy. Polyvinylidene difluoride is a polymer piezoelectric material attached to a flexible circuit made of polyimide. Four interdigitated electrode circuits were designed and outsourced for fabrication. The polyvinylidene difluoride was then attached to the interdigitated electrode circuit, and a single clear adhesive tape was used to bind them. Four piezoelectric energy harvesters and ultrasonic ceramic generators were experimentally tested using a sieve shaker. The sieve shaker contains a two-speed oscillator, with M1=0.025 m/s and M2=0.05 m/s. It was used to oscillate the energy harvester devices. The resulting induced voltages were then measured. Design 4, with the widest width of electrode fingers and the widest gap between electrode fingers, had the highest power generated at an output load of 0.745 µW with the M2 oscillation speed. The oscillation speed of the sieve shaker impacted the energy harvester devices as a higher oscillation speed gave higher generated power.


2018 ◽  
Vol 8 (11) ◽  
pp. 2091 ◽  
Author(s):  
Ramalingam Usharani ◽  
Gandhi Uma ◽  
Mangalanathan Umapathy ◽  
Seung-Bok Choi

In vibration-based piezoelectric energy harvesters, one of the major critical issues is increasing the bandwidth and output voltage simultaneously. This manuscript explores a new technique for broadening the operating frequency range and enhancing the output voltage of the piezoelectric material-based energy harvester by appropriate structural tailoring. The wide bandwidth and the improvement in harvested output are accomplished by means of a multi-stepped cantilever beam shaped with rectangular cavities. The harvester is mathematically modeled and analyzed for modal characteristics. It was demonstrated from the outcome that the first two consecutive mode frequencies could be brought closer and the output power was large at both the resonant frequencies compared to the regular cantilever beam energy harvester. The results obtained from experimentation were in agreement with analytical results.


2019 ◽  
Vol 30 (20) ◽  
pp. 3136-3145 ◽  
Author(s):  
Zhengqiu Xie ◽  
Shengxi Zhou ◽  
Jitao Xiong ◽  
Wenbin Huang

Piezoelectric vibration energy harvesting is a promising technique to power wireless sensor networks. This article originally presents a magnetically coupled asymmetric monostable dual-cantilever piezoelectric energy harvester consisting of a generating piezoelectric cantilever beam and an auxiliary cantilever beam. Theoretical and experimental results both verify that the asymmetric harvester has the superior performance compared with the conventional magnetically coupled symmetric bistable dual-cantilever piezoelectric energy harvester, yielding higher voltage output under different magnetic coupling intensities and different power densities of the band-limited Gaussian white noise random excitation. More importantly, the mechanical strain of the asymmetric harvester is much smaller than that of the symmetric harvester, being lower than half of the latter one under strong magnetic coupling. Therefore, due to its higher energy conversion efficiency and better durability, the proposed asymmetric harvester is beneficial for practical environment vibration energy harvesting.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


2014 ◽  
Vol 672-674 ◽  
pp. 402-406
Author(s):  
Bing Jiang ◽  
Shuai Yuan ◽  
Xiao Hui Xu ◽  
Mao Sheng Ding ◽  
Ye Yuan ◽  
...  

In recent years, piezoelectric energy harvester which can replace the traditional battery supply has become a hot topic in global research field of microelectronic devices. Characteristics of a trapezoidal-loop piezoelectric energy harvester (TLPEH) were analyzed through finite-element analysis. The output voltage density is 4.251V/cm2 when 0.1N force is applied to the free end of ten-arm energy harvester. Comparisons of the resonant frequencies and output voltages were made. The first order resonant frequency could reach 15Hz by increasing the number of arms. Meanwhile, the output voltage is improved greatly when excited at first-order resonant frequencies. The trapezoidal-loop structure of TLPEH could enhance frequency response, which means scavenging energy more efficiently in vibration environment. The TLPEH mentioned here might be useful for the future structure design of piezoelectric energy harvester with low resonance frequency.


Sign in / Sign up

Export Citation Format

Share Document