Mitigating Impacts of Natural Hazards on Fishery Ecosystems

<em>Abstract</em>.—The development of ecosystem management plans to restore and rehabilitate natural resources requires an understanding of how specific ecological mechanisms regulate the structure and function of ecosystems. To achieve restoration goals, comprehensive plans and engineering designs must effectively change environmental drivers at the regional level to reduce stress conditions at the local environment that are responsible for ecosystem degradation. This document focuses on the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) ecosystem forecasting framework and how it can be used to support the analysis of Louisiana’s coastal restoration plans. Specifically, the framework is designed to (1) develop and incorporate conceptual ecological models that can be used to integrate ecological needs and opportunities with engineering designs, (2) utilize wetland loss rates to describe the most likely “future without” scenario for a variety of ecosystem attributes, (3) estimate broad ecosystem responses to restoration alternatives based on processes associated with succession of geomorphic and ecological systems, and (4) calculate ecological benefits for incorporation into decision support tools associated with large-scale geomorphic and hydrologic processes. This paper provides a brief overview of the spatial framework and modular design of the CLEAR ecosystem forecasting framework and describes in greater detail the evolution of the landscape change module, concepts for its refinement, and how it was utilized in evaluating a coastal restoration alternative proposed in the Coastal Protection and Restoration Authority Preliminary Draft Master Plan. Such projections by the CLEAR forecasting framework can evaluate processes and conditions that result in sustainable coastal ecosystems with habitat functions that support higher trophic levels.

2021 ◽  
Vol 8 ◽  
Author(s):  
Kim de Mutsert ◽  
Kristy A. Lewis ◽  
Eric D. White ◽  
Joe Buszowski

Coastal erosion and wetland loss are affecting Louisiana to such an extent that the loss of land between 1932 and 2016 was close to 5,000 km2. To mitigate this decline, coastal protection and restoration projects are being planned and implemented by the State of Louisiana, United States. The Louisiana Coastal Master Plan (CMP) is an adaptive management approach that provides a suite of projects that are predicted to build or maintain land and protect coastal communities. Restoring the coast with this 50-year large-scale restoration and risk reduction plan has the potential to change the biomass and distribution of economically and ecologically important fisheries species in this region. However, not restoring the coast may have negative impacts on these species due to the loss of habitat. This research uses an ecosystem model to evaluate the effects of plan implementation versus a future without action (FWOA) on the biomass and distribution of fisheries species in the estuaries over 50 years of model simulations. By simulating effects using a spatially-explicit ecosystem model, not only can the changes in biomass in response to plan implementation be evaluated, but also the distribution of species in response to the planned restoration and risk reduction projects. Simulations are performed under two relative sea level rise (SLR) scenarios to understand the effects of climate change on project performance and subsequent fisheries species biomass and distribution. Simulation output of eight economically important fisheries species shows that the plan mostly results in increases in species biomass, but that the outcomes are species-specific and basin-specific. The SLR scenario highly affects the amount of wetland habitat maintained after 50 years (with higher levels of wetland loss under increased SLR) and, subsequently, the biomass of species depending on that habitat. Species distribution results can be used to identify expected changes for specific species on a regional basis. By making this type of information available to resource managers, precautionary measures of ecosystem management and adaptation can be implemented.


2013 ◽  
Vol 70 (5) ◽  
pp. 1045-1054 ◽  
Author(s):  
Tae-Goun Kim ◽  
Daniel R. Petrolia

Abstract Kim, T-G., and Petrolia, D. R. 2013. Public perceptions of wetland restoration benefits in Louisiana. – ICES Journal of Marine Science, 70: 1045–1054. We conducted a referendum-style contingent-valuation survey to investigate public perceptions of wetland restoration benefits including storm protection, ecosystem services, and recreational benefits and to analyse willingness to pay (WTP) for large-scale coastal restoration in Louisiana. Results of the ordered probit and binary probit models indicate that the public perceives both a strong relationship between increased wetland loss and an increased storm risk and a substantial likelihood of increased storm-protection benefits from wetland restoration. However, respondents expressed that they were less likely to believe the improved storm reduction benefits from restoration when they perceived a high frequency of category 3 or greater storms. Additionally, we found that hurricane protection benefits were the most important factor explaining WTP for wetland restoration for preventing expected future land losses in coastal Louisiana.


Shore & Beach ◽  
2020 ◽  
pp. 83-91
Author(s):  
Tim Carruthers ◽  
Richard Raynie ◽  
Alyssa Dausman ◽  
Syed Khalil

Natural resources of coastal Louisiana support the economies of Louisiana and the whole of the United States. However, future conditions of coastal Louisiana are highly uncertain due to the dynamic processes of the Mississippi River delta, unpredictable storm events, subsidence, sea level rise, increasing temperatures, and extensive historic management actions that have altered natural coastal processes. To address these concerns, a centralized state agency was formed to coordinate coastal protection and restoration effort, the Coastal Protection and Restoration Authority (CPRA). This promoted knowledge centralization and supported informal adaptive management for restoration efforts, at that time mostly funded through the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA). Since the Deepwater Horizon (DWH) oil spill in 2010 and the subsequent settlement, the majority of restoration funding for the next 15 years will come through one of the DWH mechanisms; Natural Resource and Damage Assessment (NRDA), the RESTORE Council, or National Fish and Wildlife Foundation –Gulf Environmental Benefit Fund (NFWF-GEBF). This has greatly increased restoration effort and increased governance complexity associated with project funding, implementation, and reporting. As a result, there is enhanced impetus to formalize and unify adaptive management processes for coastal restoration in Louisiana. Through synthesis of input from local coastal managers, historical and current processes for project and programmatic implementation and adaptive management were summarized. Key gaps and needs to specifically increase implementation of adaptive management within the Louisiana coastal restoration community were identified and developed into eight tangible and specific recommendations. These were to streamline governance through increased coordination amongst implementing entities, develop a discoverable and practical lessons learned and decision database, coordinate ecosystem reporting, identify commonality of restoration goals, develop a common cross-agency adaptive management handbook for all personnel, improve communication (both in-reach and outreach), have a common repository and clearing house for numerical models used for restoration planning and assessment, and expand approaches for two-way stakeholder engagement throughout the restoration process. A common vision and maximizing synergies between entities can improve adaptive management implementation to maximize ecosystem and community benefits of restoration effort in coastal Louisiana. This work adds to current knowledge by providing specific strategies and recommendations, based upon extensive engagement with restoration practitioners from multiple state and federal agencies. Addressing these practitioner-identified gaps and needs will improve engagement in adaptive management in coastal Louisiana, a large geographic area with high restoration implementation within a complex governance framework.


Shore & Beach ◽  
2020 ◽  
pp. 65-71
Author(s):  
Whitney Thompson ◽  
Christopher Paul ◽  
John Darnall

Coastal Louisiana received significant funds tied to BP penalties as a result of the Deepwater Horizon incident. As it is widely considered that the State of Louisiana sustained most of the damage due to this incident, there has been a firm push to waste no time in implementing habitat restoration projects. Sustaining the land on the coast of Louisiana is vital to our nation’s economy, as several of the nation’s largest ports are located on the Gulf coast in Louisiana. In addition, the ecosystems making up the Louisiana coast are important to sustain some of the largest and most valuable fisheries in the nation. Funded by BP Phase 3 Early Restoration, the goals of the Natural Resource Damage Assessment (NRDA) Outer Coast Restoration Project are to restore beach, dune, and marsh habitats to help compensate spill-related injuries to habitats and species, specifically brown pelicans, terns, skimmers, and gulls. Four island components in Louisiana were funded under this project; Shell Island Barrier Restoration, Chenier Ronquille Barrier Island Restoration, Caillou Lake Headlands Barrier Island Restoration, and North Breton Island Restoration (https://www. gulfspillrestoration.noaa.gov/louisiana-outer-coast-restoration, NOAA 2018). Shell Island and Chenier Ronquille are critical pieces of barrier shoreline within the Barataria Basin in Plaquemines Parish, Louisiana. These large-scale restoration projects were completed in the years following the Deepwater Horizon incident, creating new habitat and reinforcing Louisiana’s Gulf of Mexico shoreline. The Louisiana Coastal Protection and Restoration Authority (CPRA) finished construction of the Shell Island NRDA Restoration Project in 2017, which restored two barrier islands in Plaquemines Parish utilizing sand hydraulically dredged from the Mississippi River and pumped via pipeline over 20 miles over levees and through towns, marinas, and marshes to the coastline. The National Marine Fisheries Service (NMFS) also completed the Plaquemines Parish barrier island restoration at Chenier Ronquille in 2017 utilizing nearshore Gulf of Mexico sediment, restoring wetland, coastal, and nearshore habitat in the Barataria Basin. A design and construction overview is provided herein.


2019 ◽  
Vol 31 (3) ◽  
pp. 227-237
Author(s):  
Priya Lall ◽  
Rumana Saifi ◽  
Diva Baggio ◽  
Samantha Fitzsimmons Schoenberger ◽  
Martin Choo ◽  
...  

Malaysia currently has an estimated hepatitis C virus (HCV) prevalence of 1.3% with an infected population of 384,000. Fishermen in Malaysia are at risk of HCV infection due to injection drug use and disproportionately high rates of incarceration. This study used quantitative data from Project WAVES, a large-scale mixed methods project charting environmental drivers of risk-taking behaviors among a respondent-driven sample of 406 fishermen in Malaysia. Over a quarter of participants (27.9%) reported injecting drugs in the past month; 49.8% of the sample tested positive for HCV. Respondents who had previously been arrested displayed increased odds of being HCV-positive (adjusted odds ratio = 4.79, confidence Interval = 2.46-9.35). Participants who reported being in lock-up displayed close to 6-fold odds of being HCV-infected (adjusted odds ratio = 5.49, confidence interval = 2.77-10.90, P < .001). These findings underscore the need for policies and structural interventions targeting the negative effects of aggressive incarceration contributing to the burden of HCV among high-risk communities.


Author(s):  
Michalis I. Vousdoukas ◽  
Dimitrios Bouziotas ◽  
Alessio Giardino ◽  
Laurens M. Bouwer ◽  
Evangelos Voukouvalas ◽  
...  

Abstract. An upscaling of flood risk assessment frameworks beyond regional and national scales has taken place during recent years, with a number of large-scale models emerging as tools for hotspot identification, support for international policy-making and harmonization of climate change adaptation strategies. There is, however, limited insight on the scaling effects and structural limitations of flood risk models and, therefore, the underlying uncertainty. In light of this, we examine key sources of epistemic uncertainty in the Coastal Flood Risk (CFR) modelling chain: (i) the inclusion and interaction of different hydraulic components leading to extreme sea-level (ESL); (ii) inundation modelling; (iii) the underlying uncertainty in the Digital Elevation Model (DEM); (iv) flood defence information; (v) the assumptions behind the use of depth-damage functions that express vulnerability; and (vi) different climate change projections. The impact of these uncertainties to estimated Expected Annual Damage (EAD) for present and future climates is evaluated in a dual case study in Faro, Portugal and in the Iberian Peninsula. The ranking of the uncertainty factors varies among the different case studies, baseline CFR estimates, as well as their absolute/relative changes. We find that uncertainty from ESL contributions, and in particular the way waves are treated, can be higher than the uncertainty of the two greenhouse gas emission projections and six climate models that are used. Of comparable importance is the quality of information on coastal protection levels and DEM information. In the absence of large-extent datasets with sufficient resolution and accuracy the latter two factors are the main bottlenecks in terms of large-scale CFR assessment quality.


2022 ◽  
Vol 8 ◽  
Author(s):  
Chantel Elston ◽  
Paul D. Cowley ◽  
Rainer G. von Brandis ◽  
James Lea

Abiotic factors often have a large influence on the habitat use of animals in shallow marine environments. Specifically, tides may alter the physical and biological characteristics of an ecosystem while changes in temperature can cause ectothermic species to behaviorally thermoregulate. Understanding the contextual and relative influences of these abiotic factors is important in prioritizing management plans, particularly for vulnerable faunal groups like stingrays. Passive acoustic telemetry was used to track the movements of 60 stingrays at a remote and environmentally heterogeneous atoll in Seychelles. This was to determine if habitat use varied over daily, diel and tidal cycles and to investigate the environmental drivers behind these potential temporal patterns. Individuals were detected in the atoll year-round, but the extent of their movement and use of multiple habitats increased in the warmer NW-monsoon season. Habitat use varied over the diel cycle, but was inconsistent between individuals. Temperature was also found to influence stingray movements, with individuals preferring the deeper and more thermally stable lagoon habitat when extreme (hot or cold) temperature events were observed on the flats. Habitat use also varied over the tidal cycle with stingrays spending a higher proportion of time in the lagoon during the lowest tides, when movement on the flats were constrained due to shallow waters. The interplay of tides and temperature, and how these varied across diel and daily scales, dynamically influenced stingray habitat use consistently between three species in an offshore atoll.


2011 ◽  
Author(s):  
Βασίλειος Μαρδύρης

In last decades exponential reduction of integrated circuits feature size and increase in operating frequency was achieved in VLSI fabrication industry using the conventional CMOS technology. However the CMOS technology faces serious challenges as the CMOS transistor reaches its physical limits, such as ultra thin gate oxides, short channel effects, doping fluctuations and increased difficulty and consequently increased lithography cost in the nanometer scale. It is projected that the CMOS technology, in its present state will reach its limits when the transistors channel length reaches approximatly 7 nm, probably near 2019. Emerging technologies have been a topic of great interest in the last few years. The emerging technologies in nanoelectronics provide new computing possibilities that arise from their extremely reduced feature sizes. Quantum Cellular Automata (QCA) is one of the most promising emerging technologies in the fast growing area of nanoelectronics. QCA relies mostly on Coulombic interactions and uses innovative processing techniques which are very different from the CMOS-based model. QCAs are not only a new nanoelectronic model but also provide a new method of computation and information process. In QCA circuits computation and data transfer occurs simultaneously. Appling the QCA technology, the elementary building component (QCA cells) cover an area of a few nanometers. For this feature sizes the integration can reach values of 1012 cells/cm2 and the circuit switching frequency the THz level. The implementation of digital logic using QCA nanoelectronic circuits not only drives the already developed systems based on conventional technology to the nanoelectronic era but improves their performance significantly. At the present Ph.D. thesis, a study of QCA circuit clocking schemes is presented showing how these schemes contribute to the robustness of QCA circuits. A novel design of a QCA 2 to 1 multiplexer is presented. The QCA circuit is simulated and its operation is analyzed. A modular design and simulation methodology is developed for the first time. This methodology can be used to design 2n to 1 QCA multiplexers using the 2 to 1 QCA multiplexer as a building block. The design methodology is formulated in order to increase the circuit stability.Furthermore in this Ph.D. thesis, a novel design of a small size, modular quantum-dot cellular automata (QCA) 2n to 1 multiplexer is proposed, These multiplexers can be used for memory addressing. The design objective is to develop an evolving modular design methodology which can produce QCA 2n to 1 multiplexer circuits, improved in terms of circuit area and operating frequency. In these implementations the circuit stability was a major issue and was considered carefully. In the recent years, Cellular Automata (CAs) have been widely used in order to model and simulate physical systems and also to solve scientific problems. CAs have also been successfully used as a VLSI architecture and proved to be very efficient in terms of silicon-area utilization and clock-speed maximization. In the present Ph.D. thesis a design methodology is developed for the first time, which can be used to design CA models using QCA circuitry. The implementation of CAs using QCA nanoelectronic circuits significantly improves their performance due to the unique properties of the nanoelectronic circuits. In this Ph.D. thesis a new CAD system we develope for the first time, and was named Design Automation Tool of 1-D Cellular Automata using Quantum Cellular Automata (DATICAQ), that builds a bridge between one-dimensional CAs as models of physical systems and processes and one-dimensional CAs as a nanoelectronic architecture. The CAD system inputs are the CA dimensionality, size, local rule, and the initial and boundary conditions imposed by the particular problem. DATICAQ produces as output the layout of the QCA implementation of the particular one-dimensional CA model. The proposed system also provides the simulation input vectors and their corresponding outputs, in order to simplify the simulation process. No prior knowledge of QCA circuit designing is required by the user. DATICAQ has been tested for a large number of QCA circuits. Paradigms of QCA circuits implementing CA models for zero and periodic boundary conditions are presented in the thesis. Simulations of CA models and the corresponding QCA circuits showed that the CA rules and models have been successfully implemented. At the present Ph.D. thesis, the design of large scale QCA circuits is analyzed and a study of the problems arising on complex algorithm implementation using QCAs is presented. One of the most important problems of the large scale QCA circuits is the synchronization of the internal signals of the circuit between the subsystems of the large QCA circuit. This problem becomes more difficult when the circuit includes signal loops. In the present thesis a methodology and a QCA circuit is presented for the first time, which solves the above mentioned synchronization problem. The QCA circuit implements the Firing Squad Synchronization Algorithm proposed by Mazoyer in order to solve the synchronization problem. The implementation was obtained using a one-dimensional 3-bit digital CA model. The QCA circuit is simulated and its operation is analyzed.


Author(s):  
Thomas J van Veelen ◽  
Harshinie Karunarathna ◽  
William G Bennett ◽  
Tom P Fairchild ◽  
Dominic E Reeve

The ability of coastal vegetation to attenuate waves has been well established (Moller et al., 2014). Salt marshes are vegetated coastal wetlands that can act as nature- based coastal defenses. They exhibit a range of plant species, which have been shown to differ in the amount of wave damping they provide (Mullarney & Henderson, 2018). Recent studies have shown that plant flexibility is a key parameter that controls wave energy dissipation (Paul et al., 2016). Yet, no model exists that includes plant flexibility in computationally efficient manner for large-scale coastal zones. Therefore, we have developed a new model for flexible vegetation based on the key mechanisms in the wave-vegetation interaction and applied it to an estuary with diverse salt marsh vegetation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/AjnFx3aFSzs


Sign in / Sign up

Export Citation Format

Share Document