Mangroves as Fish Habitat

<em>Abstract</em>.—Mangroves are widely understood to be important habitats for fisheries, supporting resident fish, crustacean, and mollusk populations as well as acting as nursery grounds for species that are targeted by offshore fisheries. There is, however, a lack of quantitative data on fisheries that operate in and around mangroves. We carried out a systematic search to gather data on mangrove fisheries from the scientific literature. We filtered the 4,358 studies returned by the search based on their title and abstract and extracted data from 169 of these. Despite the abundance of literature on mangrove fisheries, we were unable to build a data set of comparable, quantitative data of sufficient size to support numerical modeling approaches. In part, this is due to the variety of mangrove fisheries, which range from small-scale subsistence fishing for mollusks and crabs to large-scale industrialized prawn trawling. This is compounded by the broad range of reporting methods and metrics encountered in the literature. We make a number of recommendations to guide the future reporting of mangrove fisheries to allow for better quantification and comparison of fisheries values at large spatial scales.

2014 ◽  
Vol 11 (1) ◽  
pp. 75-90 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and dissolved inorganic carbon (DIC) at seasonal and small spatial scales is examined using a data set of surface drifters including ~ 80 000 measurements at high spatiotemporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μatm for pCO2 and 2 to 30 μmol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with sea surface temperature (SST) satellite images and local DIC–SST relationships derived from drifter observations. We find that dynamical processes drive the variability of DIC at small spatial scale in most regions of the Southern Ocean and the cascade of large-scale gradients down to small spatial scales, leading to gradients up to 15 μmol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μmol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifter observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean that could be used to validate model simulations. We find that small spatial-scale structures are a non-negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, interannual variability, decadal trends) of the carbon budget from low-resolution observations and models.


2015 ◽  
Vol 112 (19) ◽  
pp. 6236-6241 ◽  
Author(s):  
Thomas M. Neeson ◽  
Michael C. Ferris ◽  
Matthew W. Diebel ◽  
Patrick J. Doran ◽  
Jesse R. O’Hanley ◽  
...  

In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.


2008 ◽  
Vol 38 (5) ◽  
pp. 1260-1266 ◽  
Author(s):  
Erik A. Lilleskov ◽  
Philip M. Wargo ◽  
Kristiina A. Vogt ◽  
Daniel J. Vogt

Increased nitrogen (N) input has been found to alter ectomycorrhizal fungal communities over short deposition gradients and in fertilization experiments; however, its effects over larger spatial scales have not been determined. To address this gap, we reanalyzed data from a study originally designed to examine the effects of soil aluminum/calcium (Al/Ca) ratios on the vitality of red spruce fine roots over a regional acid and N deposition gradient in the northeastern USA. We used root N as an indicator of stand N availability and examined its relationship with the abundance of ectomycorrhizal morphotypes. The dominant morphotypes changed in relative abundance as a function of stand N availability. As root N concentrations increased, Piloderma spp. - like, Cenococcum geophilum Fr., and other unidentified mycorrhizal morphotypes declined in abundance, while other smooth-mantled morphotypes increased. Root N concentration in the 1–2 mm diameter class was the best predictor of the abundance of multiple morphotypes. The morphotype responses were consistent with those found in experimental and small-scale studies, suggesting that N availability is altering ectomycorrhizal communities over broad spatial scales in this region. This finding provides an impetus to conduct a more detailed characterization of mycorrhizal community responses to N deposition across large-scale gradients.


2021 ◽  
Author(s):  
Ofer Shamir ◽  
Chen Schwartz ◽  
Chaim Garfinkel ◽  
Nathan Paldor

&lt;p&gt;A yet unexplained feature of the tropical wavenumber-frequency spectrum is its parity distributions, i.e., the distribution of power between the meridionally symmetric and anti-symmetric components of the spectrum. Due to the linearity of the decomposition to symmetric and anti-symmetric components and the Fourier analysis, the total spectral power equals the sum of the power contained in each of these two components. However, the spectral power need not be evenly distributed between the two components. Satellite observations and reanalysis data provide ample evidence that the parity distribution of the tropical wavenumber-frequency spectrum is biased towards its symmetric component. Using an intermediate-complexity model of an idealized moist atmosphere, we find that the parity distribution of the tropical spectrum is nearly insensitive to large-scale forcing, including topography, ocean heat fluxes, and land-sea contrast. On the other hand, by adding a small-scale (stochastic) forcing, we find that the parity distribution of the tropical spectrum is sensitive to asymmetries on small spatial scales compared to the observed large-scale spectrum. Physically, such forcing can be thought of as small-scale convection, which is believed to trigger some of the Tropics' large-scale features via an upscale (inverse) turbulent energy cascade. These results are qualitatively explained by considering the effects of triad interactions on the parity distribution. According to the proposed mechanism, any small-scale asymmetry (symmetric or anti-symmetric) in the forcing leads to symmetric bias in the spectrum, regardless of the source of variability providing the forcing.&lt;/p&gt;


2000 ◽  
Vol 407 ◽  
pp. 105-122 ◽  
Author(s):  
JACQUES VANNESTE

The effect of a small-scale topography on large-scale, small-amplitude oceanic motion is analysed using a two-dimensional quasi-geostrophic model that includes free-surface and β effects, Ekman friction and viscous (or turbulent) dissipation. The topography is two-dimensional and periodic; its slope is assumed to be much larger than the ratio of the ocean depth to the Earth's radius. An averaged equation of motion is derived for flows with spatial scales that are much larger than the scale of the topography and either (i) much larger than or (ii) comparable to the radius of deformation. Compared to the standard quasi-geostrophic equation, this averaged equation contains an additional dissipative term that results from the interaction between topography and dissipation. In case (i) this term simply represents an additional Ekman friction, whereas in case (ii) it is given by an integral over the history of the large-scale flow. The properties of the additional term are studied in detail. For case (i) in particular, numerical calculations are employed to analyse the dependence of the additional Ekman friction on the structure of the topography and on the strength of the original dissipation mechanisms.


2019 ◽  
Vol 10 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Jiake Li ◽  
Cong Mu ◽  
Chenning Deng ◽  
Menghua Ma

Abstract The storm water management models were established at three spatial scales (large, medium, and small) based on a sponge city pilot area in China to explore the hydrological and environmental effects of rainfall conditions and development modes. Results showed the following. (1) Total runoff reduction rates increased from 26.7% to 53.9% for the rainfall event of a 2-year recurrence period as the scale increased. For 5-year and above recurrence periods, total runoff reduction rates were 19.5–49.4%. These rates increased from the small to medium scale and slightly decreased from the medium to large scale. (2) The runoff coefficients were 0.87–0.29, which decreased from the small to medium scale and were basically constant from the medium to large scale. (3) The peak flow reduction rates decreased with increased recurrence periods. The rates increased initially and then decreased at the small scale, whereas the opposite trend occurred at the medium scale. (4) The reduction rates of pollutants were negatively correlated with recurrence periods under the three spatial scales. The pollution load reduction rates were 19.5–54.7%, which increased from the small to medium scale and were basically constant from the medium to large scale.


2019 ◽  
Vol 11 (14) ◽  
pp. 1691 ◽  
Author(s):  
Subhajit Bandopadhyay ◽  
Anshu Rastogi ◽  
Uwe Rascher ◽  
Patrick Rademske ◽  
Anke Schickling ◽  
...  

Hyperspectral remote sensing (RS) provides unique possibilities to monitor peatland vegetation traits and their temporal dynamics at a fine spatial scale. Peatlands provide a vital contribution to ecosystem services by their massive carbon storage and wide heterogeneity. However, monitoring, understanding, and disentangling the diverse vegetation traits from a heterogeneous landscape using complex RS signal is challenging, due to its wide biodiversity and distinctive plant species composition. In this work, we aim to demonstrate, for the first time, the large heterogeneity of peatland vegetation traits using well-established vegetation indices (VIs) and Sun-Induced Fluorescence (SIF) for describing the spatial heterogeneity of the signals which may correspond to spatial diversity of biochemical and structural traits. SIF originates from the initial reactions in photosystems and is emitted at wavelengths between 650–780 nm, with the first peak at around 687 nm and the second peak around 760 nm. We used the first HyPlant airborne data set recorded over a heterogeneous peatland area and its surrounding ecosystems (i.e., forest, grassland) in Poland. We deployed a comparative analysis of SIF and VIs obtained from differently managed and natural vegetation ecosystems, as well as from diverse small-scale peatland plant communities. Furthermore, spatial relationships between SIF and VIs from large-scale vegetation ecosystems to small-scale peatland plant communities were examined. Apart from signal variations, we observed a positive correlation between SIF and greenness-sensitive VIs, whereas a negative correlation between SIF and a VI sensitive to photosynthesis was observed for large-scale vegetation ecosystems. In general, higher values of SIF were associated with higher biomass of vascular plants (associated with higher Leaf Area Index (LAI)). SIF signals, especially SIF760, were strongly associated with the functional diversity of the peatland vegetation. At the peatland area, higher values of SIF760 were associated with plant communities of high perennials, whereas, lower values of SIF760 indicated peatland patches dominated by Sphagnum. In general, SIF760 reflected the productivity gradient on the fen peatland, from Sphagnum-dominated patches with the lowest SIF and fAPAR values indicating lowest productivity to the Carex-dominated patches with the highest SIF and fAPAR values indicating highest productivity.


1999 ◽  
Vol 394 ◽  
pp. 261-279 ◽  
Author(s):  
ROBERTO VERZICCO ◽  
JAVIER JIMÉNEZ

This paper discusses numerical experiments in which an initially uniform columnar vortex is subject to several types of axisymmetric forcing that mimic the strain field of a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero, and the vortex is alternately stretched and compressed. The emphasis is on identifying the parameter range in which the vortex survives indefinitely. This extends previous work in which the effect of steady single-scale non-uniform strains was studied. In a first series of experiments the effect of the unsteadiness of the forcing is analysed, and it is found that the vortex survives as a compact object if the ratio between the oscillation frequency and the strain itself is low enough. A theoretical explanation is given which agrees with the numerical results. The strain is then generalized to include several spatial scales and oscillation frequencies, with characteristics similar to those in turbulent flows. The largest velocities are carried by the large scales, while the highest gradients and faster time scales are associated with the shorter wavelengths. Also in these cases ‘infinitely long’ vortices are obtained which are more or less uniform and compact. Vorticity profiles averaged along their axes are approximately Gaussian. The radii obtained from these profiles are proportional to the Burgers' radius of the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional to the maximum (large-scale) axial velocity differences. The study is motivated by previous observations of intense vortex filaments in turbulent flows, and the scalings found in the present experiments are consistent with those found in the turbulent simulations.


2017 ◽  
Vol 14 (21) ◽  
pp. 5003-5014 ◽  
Author(s):  
Katrin Magin ◽  
Celia Somlai-Haase ◽  
Ralf B. Schäfer ◽  
Andreas Lorke

Abstract. Inland waters play an important role in regional to global-scale carbon cycling by transporting, processing and emitting substantial amounts of carbon, which originate mainly from their catchments. In this study, we analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from the catchments in a temperate stream network. The analysis included more than 200 catchment areas in southwest Germany, ranging in size from 0.8 to 889 km2 for which CO2 evasion from stream surfaces and downstream transport with stream discharge were estimated from water quality monitoring data, while NPP in the catchments was obtained from a global data set based on remote sensing. We found that on average 13.9 g C m−2 yr−1 (corresponding to 2.7 % of terrestrial NPP) are exported from the catchments by streams and rivers, in which both CO2 evasion and downstream transport contributed about equally to this flux. The average carbon fluxes in the catchments of the study area resembled global and large-scale zonal mean values in many respects, including NPP, stream evasion and the carbon export per catchment area in the fluvial network. A review of existing studies on aquatic–terrestrial coupling in the carbon cycle suggests that the carbon export per catchment area varies in a relatively narrow range, despite a broad range of different spatial scales and hydrological characteristics of the study regions.


2002 ◽  
Vol 456 ◽  
pp. 219-237 ◽  
Author(s):  
FAUSTO CATTANEO ◽  
DAVID W. HUGHES ◽  
JEAN-CLAUDE THELEN

By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.


Sign in / Sign up

Export Citation Format

Share Document