scholarly journals PROVIDING THE BOUNDARY LINE CONTROLLED REQUEST WITH ADAPTABLE TRANSMISSION RATES IN WDM MESH NETWORKS

Author(s):  
ANUSHA ANNAPUREDDY ◽  
B. BALAJI

The mixture of applications increases and supported over optical networks, to the network customers new service guarantees must be offered .The partitioning the data into multiple segments which can be processed independently the useful data to be transferred before a predefined deadline .this is a deadline driven request. To provide the request the customer chooses the bandwidth DDRs provide scheduling flexibility for the service providers. It chooses bandwidth while achieving two objectives 1.satisfying the guaranteed deadline 2.decreasing network resource utilization .by using bandwidth allocation policies improve the network performance and by using mixed integer linear program allows choosing flexible transmission rates.

Author(s):  
Sridhar Iyer

With steady traffic volume growth in the core networks, it is predicted that the future optical network communication will be constrained mainly by the power consumption. Hence, for future internet sustainability, it will be a mandate to ensure power-efficiency in the optical networks. Two paradigms known to support both, the traffic heterogeneity and high bandwidth requests are the: (i) next generation flexible (or elastic) orthogonal frequency division multiplexing (OFDM) based networks which provide flexible bandwidth allocation per wavelength, and (ii) currently deployed mixed-line-rate (MLR) based networks which provision the co-existence of 10/40/100 Gbps on varied wavelengths within the same fiber. In this work, the power-efficiency of an OFDM, and a MLR based network has been compared for which, a mixed integer linear program (MILP) model has been formulated considering deterministic traffic between every network source-destination pair. The simulation results show that in regard to power-efficiency, the OFDM based network outperforms the MLR based network.


2014 ◽  
Vol 5 (1) ◽  
pp. 20-45 ◽  
Author(s):  
Sharad Sharma ◽  
Shakti Kumar ◽  
Brahmjit Singh

Wireless Mesh Networks (WMNs) are emerging as evolutionary self organizing networks to provide connectivity to end users. Efficient Routing in WMNs is a highly challenging problem due to existence of stochastically changing network environments. Routing strategies must be dynamically adaptive and evolve in a decentralized, self organizing and fault tolerant way to meet the needs of this changing environment inherent in WMNs. Conventional routing paradigms establishing exact shortest path between a source-terminal node pair perform poorly under the constraints imposed by dynamic network conditions. In this paper, the authors propose an optimal routing approach inspired by the foraging behavior of ants to maximize the network performance while optimizing the network resource utilization. The proposed AntMeshNet algorithm is based upon Ant Colony Optimization (ACO) algorithm; exploiting the foraging behavior of simple biological ants. The paper proposes an Integrated Link Cost (ILC) measure used as link distance between two adjacent nodes. ILC takes into account throughput, delay, jitter of the link and residual energy of the node. Since the relationship between input and output parameters is highly non-linear, fuzzy logic was used to evaluate ILC based upon four inputs. This fuzzy system consists of 81 rules. Routing tables are continuously updated after a predefined interval or after a change in network architecture is detected. This takes care of dynamic environment of WMNs. A large number of trials were conducted for each model. The results have been compared with Adhoc On-demand Distance Vector (AODV) algorithm. The results are found to be far superior to those obtained by AODV algorithm for the same WMN.


2013 ◽  
Vol 20 (Special-Issue) ◽  
pp. 67-73 ◽  
Author(s):  
Nathan Huynh ◽  
Fateme Fotuhi

Abstract In this paper, we address thefreight network design problem. A mixed integer linear program is formulated to help logistics service providers jointlyselect the best terminal locations among a set of candidate locations, shipping modes, and route for shipping different types of commodities. The developed model isapplied to two different networksto show its applicability. Results obtained from CPLEX for the case studiesare presented, and the benefit of the proposed model is discussed


Author(s):  
Oscar Jaime Ciceri Coral ◽  
Nelson Luis Saldanha Fonseca

Passive optical network (PON) is a cost-efficient access network technology to deliver broadband services. Moreover, service providers employ PONs to offer novel services. New business scenarios are, thus, envisioned in which customers owning multiple optical network units (ONUs) are connected to a single PON (multi-ONU customers). This paper proposes a dynamic bandwidth allocation (DBA) algorithm to guaranteed bandwidth for multi-ONU customers in Ethernet PONs (EPONs). It also introduces a bandwidth sharing algorithm to support cooperation among customers. Results show that the proposed algorithm can improve the overall throughput and quality of service provisioning.


2021 ◽  
Vol 11 (19) ◽  
pp. 9163
Author(s):  
Mateusz Żotkiewicz ◽  
Wiktor Szałyga ◽  
Jaroslaw Domaszewicz ◽  
Andrzej Bąk ◽  
Zbigniew Kopertowski ◽  
...  

The new generation of programmable networks allow mechanisms to be deployed for the efficient control of dynamic bandwidth allocation and ensure Quality of Service (QoS) in terms of Key Performance Indicators (KPIs) for delay or loss sensitive Internet of Things (IoT) services. To achieve flexible, dynamic and automated network resource management in Software-Defined Networking (SDN), Artificial Intelligence (AI) algorithms can provide an effective solution. In the paper, we propose the solution for network resources allocation, where the AI algorithm is responsible for controlling intent-based routing in SDN. The paper focuses on the problem of optimal switching of intents between two designated paths using the Deep-Q-Learning approach based on an artificial neural network. The proposed algorithm is the main novelty of this paper. The Developed Networked Application Emulation System (NAPES) allows the AI solution to be tested with different patterns to evaluate the performance of the proposed solution. The AI algorithm was trained to maximize the total throughput in the network and effective network utilization. The results presented confirm the validity of applied AI approach to the problem of improving network performance in next-generation networks and the usefulness of the NAPES traffic generator for efficient economical and technical deployment in IoT networking systems evaluation.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Himanshi Saini ◽  
Amit Kumar Garg

AbstractFailures and malicious attacks in high-speed optical networks lead to huge data as well as revenue loss. In this paper, a survivability technique called Dynamic and Hybrid with Multiple Backup selection Criteria technique for high-speed networks has been proposed with the objective to minimize network resource utilization, blocking probability, End-to-End delay and maximize throughput. The proposed model decides the type of backup provisioning technique based on the location of failure in the network. Protection has been provisioned to selective links near to destination node and other links are restored. The simulation results indicate that proposed survivability technique is efficient as compared to conventional techniques in terms of various network performance measuring parameters. This technique inherits merits of protection as well as restoration. It can be practically implemented to provide resilience in future high-speed networks.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashok Kumar ◽  
V. K. Banga ◽  
Amit Wason

AbstractPassive optical network (PON) supported orthogonal frequency division multiplexing is a network that is designed for subsequent generation of optical networks. During this work, the proposed algorithm consists of neurofuzzy rules which update and control the minimum bandwidth allocation granularity \left( g \right). In order to improve the quality of service, a biogeography-based optimization algorithm is introduced and a new fitness function is proposed which reduces the round trip time by enhancing the distribution scaling factor. Hence, the proposed work reduces the jitter and increases the throughput of the PON for fixed g = 1 which enhances the network performance by 3.4 % and 1.23 %, respectively.


Author(s):  
Tugba Arsava ◽  
Yuanchang Xie ◽  
Nathan Gartner

Traditional progression band optimization methods are focused on providing uninterrupted flow along arterial streets. For arterials with significant traffic streams joining and leaving from side streets, these approaches often generate poor traffic signal control performance. To address this deficiency, an origin–destination (OD) information based progression band optimization model, OD-BAND, was formulated to coordinate signals for arterials with major side-street traffic streams. This paper aims to extend the OD-BAND model further to address the OD based traffic signal coordination problem in multi-arterial grid networks. The extended model is able to create separate progression bands for each major OD stream in the network. In this expanded model, individual arterials are connected with loop constraints to ensure that offsets derived via different paths for a particular intersection are equal. The new OD-NETBAND model is formulated as a mixed integer linear program that maximizes the sum of each major OD stream’s progression bandwidth. It can optimize simultaneously cycle length, offsets, and phase sequences for the entire network. Performance of the new model is evaluated with AIMSUN microscopic simulation and is compared with MAXBAND-86 and Synchro results.


Author(s):  
Sridhar Iyer ◽  
Shree Prakash Singh

In the existing studies on Mixed Line Rate (MLR) optical networks, the network design methodology is based on the assumption of deterministic traffic, and hence, the effect of traffic uncertainty on the design of an MLR network remains an open problem of research. In this study, we upgrade our previously proposed cost-efficient mixed integer linear program (MILP) formulation for an MLR network, which considered a specific mean traffic for every network source-destination pair. Our upgraded model employs an optimization technique to account for the traffic uncertainties that an actual MLR optical network may encounter. Our simulation results show that (i) if the MLR network is cost-optimized under the assumption that approximately 10-20% of the demands are at their maximum (or peak) value then, the network demonstrates robustness to traffic peaks in approximately all the other demands, and (ii) the saturation of network cost for a number of source-destination pairs is network topology dependent.


2012 ◽  
Vol 3 (3) ◽  
pp. 368-374
Author(s):  
Usha Kumari ◽  
Udai Shankar

IEEE 802.16 based wireless mesh networks (WMNs) are a promising broadband access solution to support flexibility, cost effectiveness and fast deployment of the fourth generation infrastructure based wireless networks. Reducing the time for channel establishment is critical for low latency/interactive Applications. According to IEEE 802.16 MAC protocol, there are three scheduling algorithms for assigning TDMA slots to each network node: centralized and distributed the distributed is further divided into two operational modes coordinated distributed and uncoordinated distributed. In coordinated distributed scheduling algorithm, network nodes have to transmit scheduling message in order to inform other nodes about their transfer schedule. In this paper a new approach is proposed to improve coordinated distributed scheduling efficiency in IEEE 802.16 mesh mode, with respect to three parameter Throughput, Average end to end delay and Normalized Overhead. For evaluating the proposed networks efficiency, several extensive simulations are performed in various network configurations and the most important system parameters which affect the network performance are analyzed


Sign in / Sign up

Export Citation Format

Share Document