scholarly journals Artificial Intelligence Control Logic in Next-Generation Programmable Networks

2021 ◽  
Vol 11 (19) ◽  
pp. 9163
Author(s):  
Mateusz Żotkiewicz ◽  
Wiktor Szałyga ◽  
Jaroslaw Domaszewicz ◽  
Andrzej Bąk ◽  
Zbigniew Kopertowski ◽  
...  

The new generation of programmable networks allow mechanisms to be deployed for the efficient control of dynamic bandwidth allocation and ensure Quality of Service (QoS) in terms of Key Performance Indicators (KPIs) for delay or loss sensitive Internet of Things (IoT) services. To achieve flexible, dynamic and automated network resource management in Software-Defined Networking (SDN), Artificial Intelligence (AI) algorithms can provide an effective solution. In the paper, we propose the solution for network resources allocation, where the AI algorithm is responsible for controlling intent-based routing in SDN. The paper focuses on the problem of optimal switching of intents between two designated paths using the Deep-Q-Learning approach based on an artificial neural network. The proposed algorithm is the main novelty of this paper. The Developed Networked Application Emulation System (NAPES) allows the AI solution to be tested with different patterns to evaluate the performance of the proposed solution. The AI algorithm was trained to maximize the total throughput in the network and effective network utilization. The results presented confirm the validity of applied AI approach to the problem of improving network performance in next-generation networks and the usefulness of the NAPES traffic generator for efficient economical and technical deployment in IoT networking systems evaluation.

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1556
Author(s):  
Myunghoon Jeon ◽  
Namgi Kim ◽  
Yehoon Jang ◽  
Byoung-Dai Lee

With the recent advancements in cloud computing technology, the number of cloud-based services has been gradually increasing. Symmetrically, users are asking for quality of experience (QoE) to be maintained or improved. To do this, it has become necessary to manage network resources more efficiently inside the cloud. Many theoretical studies for improving the users’ QoE have been proposed. However, there are few practical solutions due to the lack of symmetry between implementation and theoretical researches. Hence, in this study, we propose a ranking table-based network resource allocation method that dynamically allocates network resources per service flow based on flow information periodically collected from a software defined network (SDN). It dynamically identifies the size of the data transmission for each service flow on the SDN and differentially allocates network resources to each service flow based on this size. As a result, it maintains the maximum QoE for the user by increasing the network utilization. The experimental results show that the proposed method achieves 29.4% higher network efficiency than the general Open Shortest Path First (OSPF) method on average.


2019 ◽  
Vol 9 (1) ◽  
pp. 137
Author(s):  
Zhiyong Ye ◽  
Yuanchang Zhong ◽  
Yingying Wei

The workload of a data center has the characteristics of complexity and requirement variability. However, in reality, the attributes of network workloads are rarely used by resource schedulers. Failure to dynamically schedule network resources according to workload changes inevitably leads to the inability to achieve optimal throughput and performance when allocating network resources. Therefore, there is an urgent need to design a scheduling framework that can be workload-aware and allocate network resources on demand based on network I/O virtualization. However, in the current mainstream I/O virtualization methods, there is no way to provide workload-aware functions while meeting the performance requirements of virtual machines (VMs). Therefore, we propose a method that can dynamically sense the VM workload to allocate network resources on demand, and can ensure the scalability of the VM while improving the performance of the system. We combine the advantages of I/O para-virtualization and SR-IOV technology, and use a limited number of virtual functions (VFs) to ensure the performance of network-intensive VMs, thereby improving the overall network performance of the system. For non-network-intensive VMs, the scalability of the system is guaranteed by using para-virtualized Network Interface Cards (NICs) which are not limited in number. Furthermore, to be able to allocate the corresponding bandwidth according to the VM’s network workload, we hierarchically divide the VF’s network bandwidth, and dynamically switch between VF and para-virtualized NICs through the active backup strategy of Bonding Drive and ACPI Hotplug technology to ensure the dynamic allocation of VF. Experiments show that the allocation framework can effectively improve system network performance, in which the average request delay can be reduced by more than 26%, and the system bandwidth throughput rate can be improved by about 5%.


Author(s):  
Muhammad Arshad ◽  
◽  
Lala Rukh ◽  
Hussain Shah ◽  
Bilal Khan

Multiprotocol label switching is the latest and developing technology in the world of the internet. It speeds up the network by using the technique of label instead of an IP address. It provides reliable transmission of data with high speed and low delay. For efficient use of network utilization MPLS has a key feature of QoS. Due to the effective utilization of network resources, minimum delay and predictable performance MPLS technology make it more appropriate for implementing multimedia type applications. In this research, the performance of MPLS technology is compared with the traditional IP network for multimedia traffic in node scalable networks. For simulating and comparing the performance of both technologies OPNET modular 14.5 is used. This comparison is done on the basis of network performance parameters such as packet loss/ traffic drop, end-to-end delay, and throughput. Finally, the results have been evaluated which show that MPLS technology provides better performance as compared to IP in node scalable environment.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3444 ◽  
Author(s):  
Cheol-Ho Hong ◽  
Kyungwoon Lee ◽  
Minkoo Kang ◽  
Chuck Yoo

Fog computing is a new computing paradigm that employs computation and network resources at the edge of a network to build small clouds, which perform as small data centers. In fog computing, lightweight virtualization (e.g., containers) has been widely used to achieve low overhead for performance-limited fog devices such as WiFi access points (APs) and set-top boxes. Unfortunately, containers have a weakness in the control of network bandwidth for outbound traffic, which poses a challenge to fog computing. Existing solutions for containers fail to achieve desirable network bandwidth control, which causes bandwidth-sensitive applications to suffer unacceptable network performance. In this paper, we propose qCon, which is a QoS-aware network resource management framework for containers to limit the rate of outbound traffic in fog computing. qCon aims to provide both proportional share scheduling and bandwidth shaping to satisfy various performance demands from containers while implementing a lightweight framework. For this purpose, qCon supports the following three scheduling policies that can be applied to containers simultaneously: proportional share scheduling, minimum bandwidth reservation, and maximum bandwidth limitation. For a lightweight implementation, qCon develops its own scheduling framework on the Linux bridge by interposing qCon’s scheduling interface on the frame processing function of the bridge. To show qCon’s effectiveness in a real fog computing environment, we implement qCon in a Docker container infrastructure on a performance-limited fog device—a Raspberry Pi 3 Model B board.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 262
Author(s):  
Ms. P. Sudha ◽  
Dr A. Rengarajan

WiMAX network provides effective internet communication between users with low expense and ease of deployment. It is used efficiently in small to medium enterprises. However, proficient resource allocation and scheduling is still a critical requirement in WiMAX networks due to the varying factors related to the network communication. If the network resources are not appropriately allocated, then there are possibilities for missing out critical data, or wasting more resources on transmitting less important data which in turn will have adverse affect on data transmission in the future stages. Hence, in this paper, we propose to develop a Priority Based Dynamic Resource Allocation and Scheduling for WiMAX Networks. In this technique, the incoming data are dynamically allocated, and then users are prioritized to identify the critical users. The allocation and scheduling is performed by considering user priority, robustness and also power consumption rate to ensure effective network performance. 


Author(s):  
Yaser Jararweh ◽  
Mahmoud Al-Ayyoub ◽  
Ahmad Doulat ◽  
Ahmad Al Abed Al Aziz ◽  
Haythem A. Bany Salameh ◽  
...  

Software defined networking (SDN) provides a novel network resource management framework that overcomes several challenges related to network resources management. On the other hand, Cognitive Radio (CR) technology is a promising paradigm for addressing the spectrum scarcity problem through efficient dynamic spectrum access (DSA). In this paper, the authors introduce a virtualization based SDN resource management framework for cognitive radio networks (CRNs). The framework uses the concept of multilayer hypervisors for efficient resources allocation. It also introduces a semi-decentralized control scheme that allows the CRN Base Station (BS) to delegate some of the management responsibilities to the network users. The main objective of the proposed framework is to reduce the CR users' reliance on the CRN BS and physical network resources while improving the network performance by reducing the control overhead.


2003 ◽  
Vol 04 (03) ◽  
pp. 361-375
Author(s):  
Satoshi Ohzahata ◽  
Shigetomo Kimura ◽  
Yoshihiko Ebihara

In this paper, we propose an adaptive handoff algorithm based on the "threshold-with-hysteresis." In general, such handoff algorithms are proposed to improve their handoff decision mechanism for only one user. Our algorithm aims to provide efficient network utilization and effect for all users. The proposed method dynamically changes the timing of handoff by the number of calls in the base station (BS). In our algorithm, when a BS has quite many calls, each MN tends to easily go out from the cell. On the other hand, in case that the BS is less crowded, every MN tries to keep the current connection as long as possible. From above control, the network resource is efficiently used, because our proposed method works as if the network resources are traded among the adjacent BSs. To implement our algorithm in Mobile IP, we also propose a system architecture with QoS mechanism. To realize the handoff decision based on the mobile nodes, the periodical agent advertisements in Mobile IP include information of the congestion status at the BS for our algorithm. The simulation experiments show that our proposed algorithm improves the average handoff blocking rate without decreasing throughput of the entire networks.


Author(s):  
ANUSHA ANNAPUREDDY ◽  
B. BALAJI

The mixture of applications increases and supported over optical networks, to the network customers new service guarantees must be offered .The partitioning the data into multiple segments which can be processed independently the useful data to be transferred before a predefined deadline .this is a deadline driven request. To provide the request the customer chooses the bandwidth DDRs provide scheduling flexibility for the service providers. It chooses bandwidth while achieving two objectives 1.satisfying the guaranteed deadline 2.decreasing network resource utilization .by using bandwidth allocation policies improve the network performance and by using mixed integer linear program allows choosing flexible transmission rates.


Author(s):  
Jiawei Huang ◽  
Shiqi Wang ◽  
Shuping Li ◽  
Shaojun Zou ◽  
Jinbin Hu ◽  
...  

AbstractModern data center networks typically adopt multi-rooted tree topologies such leaf-spine and fat-tree to provide high bisection bandwidth. Load balancing is critical to achieve low latency and high throughput. Although the per-packet schemes such as Random Packet Spraying (RPS) can achieve high network utilization and near-optimal tail latency in symmetric topologies, they are prone to cause significant packet reordering and degrade the network performance. Moreover, some coding-based schemes are proposed to alleviate the problem of packet reordering and loss. Unfortunately, these schemes ignore the traffic characteristics of data center network and cannot achieve good network performance. In this paper, we propose a Heterogeneous Traffic-aware Partition Coding named HTPC to eliminate the impact of packet reordering and improve the performance of short and long flows. HTPC smoothly adjusts the number of redundant packets based on the multi-path congestion information and the traffic characteristics so that the tailing probability of short flows and the timeout probability of long flows can be reduced. Through a series of large-scale NS2 simulations, we demonstrate that HTPC reduces average flow completion time by up to 60% compared with the state-of-the-art mechanisms.


2015 ◽  
Vol 727-728 ◽  
pp. 996-999 ◽  
Author(s):  
Su Xia Cui

The issue of WDM network traffic grooming has been a hot in the field of research. The implementation of traffic grooming technology can improve the utilization of wavelength channels, reducing the link delay and the blocking rate of the network, which to improve network resource utilization and optimize network performance. This article mainly studies all-optical network routing algorithm utilizing WDM technology to achieve the dynamic traffic grooming and propose a optimization grooming policy -HaffmanGroom (M) algorithms which based on SONET / WDM ring network. The most important feature of this algorithm is that the SONET / WDM ring network of multiple multicast request packet , with a minimum weight of the light path priority selection method, the flow of requests each group effectively optimize ease . The algorithm takes into account the impact of the link request factor and link hops to optimize the link selection. The simulation results show that under the conditions of factors and the number of hop a request fully consider the impact of these two factors to the link, and can achieve optimal link with the smallest weights for effective data transmission, improving resource utilization, reducing blocking rate in order to achieve the purpose of optimizing network performance.


Sign in / Sign up

Export Citation Format

Share Document