Analysis on Key Technology and Instrument Control of Chemical Automation Control

2021 ◽  
2012 ◽  
Vol 157-158 ◽  
pp. 727-730
Author(s):  
Feng Tao Wang ◽  
Liang He ◽  
Dong Wu

According to the test-bed requirements and structural characteristics of gearbox ,this system for high-speed gearbox is designed based on LabVIEW. Firstly, programming mode and structure of the application program is introduced, secondly, data acquisition, bus technology of instrument control is presented. At last, the key technology of the program design is also expounded.


2021 ◽  
Vol 3 (8) ◽  
pp. 33-35
Author(s):  
Zihao Guo ◽  

With the continuous development and progress of my country’s social economy, electronic information technology has begun to penetrate into all areas of real life. Today, electronic information technology has become an indispensable key technology. Applying this technology to industrial electrical automation can not only bring faster and more convenient technology to industrial production, but also help the development of industrial production automation control. Therefore, electronic information technology has been widely used in industry. This article mainly analyzes the overview of electronic information technology and its application significance in industrial electrical automation, and then puts forward the practical application and innovative measures of electronic information technology in industrial electrical automation, hoping to provide reference for relevant personnel.


Author(s):  
P. Hagemann

The use of computers in the analytical electron microscopy today shows three different trends (1) automated image analysis with dedicated computer systems, (2) instrument control by microprocessors and (3) data acquisition and processing e.g. X-ray or EEL Spectroscopy.While image analysis in the T.E.M. usually needs a television chain to get a sequential transmission suitable as computer input, the STEM system already has this necessary facility. For the EM400T-STEM system therefore an interface was developed, that allows external control of the beam deflection in TEM as well as the control of the STEM probe and video signal/beam brightness on the STEM screen.The interface sends and receives analogue signals so that the transmission rate is determined by the convertors in the actual computer periphery.


Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Author(s):  
N. D. Evans ◽  
M. K. Kundmann

Post-column energy-filtered transmission electron microscopy (EFTEM) is inherently challenging as it requires the researcher to setup, align, and control both the microscope and the energy-filter. The software behind an EFTEM system is therefore critical to efficient, day-to-day application of this technique. This is particularly the case in a multiple-user environment such as at the Shared Research Equipment (SHaRE) User Facility at Oak Ridge National Laboratory. Here, visiting researchers, who may oe unfamiliar with the details of EFTEM, need to accomplish as much as possible in a relatively short period of time.We describe here our work in extending the base software of a commercially available EFTEM system in order to automate and streamline particular EFTEM tasks. The EFTEM system used is a Philips CM30 fitted with a Gatan Imaging Filter (GIF). The base software supplied with this system consists primarily of two Macintosh programs and a collection of add-ons (plug-ins) which provide instrument control, imaging, and data analysis facilities needed to perform EFTEM.


Author(s):  
John Mansfield

Advances in camera technology and digital instrument control have meant that in modern microscopy, the image that was, in the past, typically recorded on a piece of film is now recorded directly into a computer. The transfer of the analog image seen in the microscope to the digitized picture in the computer does not mean, however, that the problems associated with recording images, analyzing them, and preparing them for publication, have all miraculously been solved. The steps involved in the recording an image to film remain largely intact in the digital world. The image is recorded, prepared for measurement in some way, analyzed, and then prepared for presentation.Digital image acquisition schemes are largely the realm of the microscope manufacturers, however, there are also a multitude of “homemade” acquisition systems in microscope laboratories around the world. It is not the mission of this tutorial to deal with the various acquisition systems, but rather to introduce the novice user to rudimentary image processing and measurement.


Sign in / Sign up

Export Citation Format

Share Document