Structural Style and Reservoir Forming Characteristics of Dawangzhuang Buried Hill

2021 ◽  
Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract NJZ Alloy No. 55 is a zinc-cadmium alloy characterized by high tensile strength and hardness but low ductility. It has high stiffness and resiliency but low drawing and forming characteristics. Its applications include hardware and medallions. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep and fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Zn-30. Producer or source: New Jersey Zinc Company.


2016 ◽  
Author(s):  
Ernie R. Slucher ◽  
◽  
Peter D. Warwick ◽  
Christina A. DeVera ◽  
Celeste D. Lohr ◽  
...  

2021 ◽  
Vol 692 (4) ◽  
pp. 042011
Author(s):  
Chongyu Ren ◽  
Hongjiu Lv ◽  
Wenfeng Huang ◽  
Bo Liu ◽  
Zhengquan Zhao
Keyword(s):  
The West ◽  

2021 ◽  
Vol 95 (1) ◽  
pp. 121-130
Author(s):  
Honggang ZHAO ◽  
Ying LI ◽  
Xiangchun CHANG ◽  
Zengxue LI ◽  
Haiyan LIU ◽  
...  

Author(s):  
Qiwen Jin ◽  
Zheng Liu

In-service bridges, under long-term service operational environment, are usually accompanied by different damage types. Traditional method for the measure point arrangement of in-service bridge SHM is usually based on engineering experience. A large number of SHM sensors are usually arranged on the structure, followed by a high engineering cost and a heavy maintenance task. These sensors will also produce large amounts of data, creating a challenge for operators requiring to deal with data processing in an effective manner. This study serves as a part of the series of studies on the measure point arrangement strategy of in-service bridge SHM. In this study, the SHM sensor measure point arrangement of in-service continuous girder bridge (a common structural style of high way bridge in China) is proposed. Two-span continuous beam, three-span continuous beam, and four-span continuous beam are taken as examples. Detailed comparison and verification are also performed with consideration of numerical simulation and previous studies. Different traffic speeds and different bridge spans are considered. The effect of different damage locations and different damage degrees are analyzed in detail. This study shows that a general similar trend can be observed for the structural robustness of in-service continuous girder bridge. The elements with smaller structural robustness of this kind of bridge are basically located around the middle cross section of side spans (first span and last span), followed by the middle span. Moreover, the numerical value of structural robustness of different elements in a continuous girder bridge is significantly different from each other, due to the complexity of the joint effect of different traffic speeds and damage locations. Therefore, the measure point should be generally arranged at the side span firstly, followed by the middle span. With consideration of the specific traffic speed and damage location in engineering application, a detailed analysis is also proposed for the further optimization of SHM sensor measure point arrangement. Once the elements are arranged in order of the numerical value of structural robustness, the SHM sensor measure point arrangement of this kind of bridge can be more targeted, and the number of sensors can also be greatly reduced.


2019 ◽  
Author(s):  
Yiming Zhang ◽  
Jianzhang Tian ◽  
Dexiang Yang ◽  
Shuguang Chen ◽  
Xing Liu ◽  
...  

2009 ◽  
Author(s):  
Zhirang Zhang ◽  
Mingjin Zhao ◽  
Hongluo Wang ◽  
Shaoguo Yang

2012 ◽  
Vol 616-618 ◽  
pp. 174-184
Author(s):  
Yong He Sun ◽  
Lin Kang ◽  
Feng Xiang Yang ◽  
Xue Song Li

In order to reveal in middle fault depression belt of Hailer-Tamtsag Basin buried hill oil and gas migration and accumulation characteristics, we summarize controlling effect of fault on oil and gas migration and accumulation of buried hill, which by analysing genetic mechanism of buried hills based on fault systems formation and evolution. Research shows that three types of fault system in Hailer-Tamtsag Basin: early stretched fault system(Type I), early stretched middle tensile shearing fault system(Type I-II), early stretched middle tensile shearing reverse late fault system(Type I-II-III). Type I-II and I-II-III are stretching by NW tensional stress in Nantun group ,which afford tectonic framework for syngenesis buried hill and epigenetic buried hill. Type I make buried hills complicated .It is also favorable to ancient geomorphological buried hill in the fault less affected zones. Although they formed cracks dense zone easier, Type I-II and I-II-III fault system damage the reservoir which is not conducive to " hydrocarbon-supplying window " formation; Type I fault system have less promotion on the development of the buried hill reservoir, while it is conducive to hydrocarbon accumulation as the block boundary in buried hill hydrocarbon. Fault formed source rocks two kinds for hydrocarbon mode: unidirectional and bidirectional, which formed two reservoir-forming pattern: Unidirectional transportation hydrocarbon of weathering crust or hydrocarbon of fracture damage zones and bidirectional transportation hydrocarbon of weathering crust or hydrocarbon of fracture damage zones.


2011 ◽  
Vol 213 ◽  
pp. 221-225 ◽  
Author(s):  
Jeong Hwan Jang ◽  
Byeong Don Joo ◽  
Sung Min Mun ◽  
Young Hoon Moon

Studies on the forming characteristics by a rotary swaging process using the sub-scale specimens have been carried out to obtain a shell body nose of desirable quality. To analyze the changes of the nose thickness and length at the respective reduction of inside diameter, the finite element simulations were carried out. As a result, the desired target dimension is satisfied with the diameter reduction of more than 64 % for the given preform. The thickness of nose area increased up to 56.1 % from initial thickness of 2.62 mm to 4.09 mm after swaging. The values of the hardness before and after swaging were 208 HV and 325 HV, respectively. To analyze the dimensional changes (length and thickness) of nose area with decreasing inside diameter, the rotary swaging test was carried out for two different diameter reductions such as 65 % and 67 %. The lengths of nose area for the diameter reductions are 11.79 mm in 65 % and 12.53 mm in 67 %, respectively. At the diameter reduction of more than 67%, the crack occurs when the localized strain hardening reduces ductility in internal area. Therefore, the nose area should be formed from 64% to 67% reduction in target inner diameter.


Sign in / Sign up

Export Citation Format

Share Document