Study on Self-compensation Design of Main Seal Structure of High Temperature and High Pressure Ball Valve

2021 ◽  
2012 ◽  
Author(s):  
Joon Ho Lee ◽  
Rock Won Jeon ◽  
Si Pom Kim ◽  
Jae Hun Lee ◽  
Jae Hoon Lee

Author(s):  
Agre Virbhadra Dhanraj

The ball valves are used in place of pipelines where the flow of fluid is needed. Ball valves have been mostly used for high temperature and high pressure valves which requires high quality products with confidentiality, reliability and durability. The ball has a bore or passage through the middle, so that when the port is in line with both ends of the valve, the flow of fluid will occur. When the valve is closed, the hole is perpendicular to the ends of the valve, and the flow is closed. The ball valve can revolve 90°, which has large size and weight, but it has not only an enormously more excellent confidentiality than other valves in the severely high temperature and high pressure environment When the ball valve is in closed condition the pressure exerted on the ball valve body due to that high pressure fatigue stresses and strain develop on the body of valve. Because of the high pressure and temperature on the ball valve body leakage of body take place which cause safety issue and ball valve failure. By this research stress strain analysis of ball valve body obtains and identifies the maximum and minimum stress and strain produced on the body of ball valve. The Max stress by parts was confirmed through thermal-structural coupled field analysis of major parts to evaluate safety. The objective of this research is to examine the effect of pressure and temperatures on valve components its analysis and optimization


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Meri Rahmi ◽  
Delffika Canra ◽  
Suliono Suliono

Ball valve is one type of rotary motion valve. Ball valve functions as a round disc-shaped ball-like controller. Ball valve is widely used because it is easy to repair and the ability in high pressure and high temperature. The fluid flow in the ball valve does not always flow, sometimes the flow is closed. This will affect the fluid pressure in the valve. Fluid pressure is also affected due to valve open condition. This study aims to analyze the difference of the fluid pressure in ball valve -4 inch ANSI during closed condition and open condition. The method used is Computational Fluid Dynamics with f Flow Simulation Solidworks software. The analysis was performed for two valve conditions with a temperature of 425 °C. Decrease in pressure does not significantly affect the condition of the ball valve, even when the temperature of the fluid is high. The difference of fluid pressure between full closed condition and full open is only 0.01 psi.


Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


Alloy Digest ◽  
2019 ◽  
Vol 68 (11) ◽  

Abstract YSS YXM4 is a cobalt-alloyed molybdenum high-speed tool steel with resistance to abrasion, seizure, and deformation under high pressure. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance. Filing Code: TS-780. Producer or source: Hitachi Metals America, Ltd.


Sign in / Sign up

Export Citation Format

Share Document