Test Analysis and Bearing Capacity Evaluation of Reinforced Concrete Box Arch Bridge

2021 ◽  
2008 ◽  
Vol 385-387 ◽  
pp. 41-44 ◽  
Author(s):  
Shi Qi Cui ◽  
Jin Shan Wang ◽  
Zhao Zhen Pei ◽  
Zhi Liu

Reinforced concrete beams strengthened with externally bonded CFRP sheet and prestressed CFRP are analyzed in this paper. Crack developments and displacements with curvatures for different beams are analyzed. Test results show that prestressed CFRP are able to control the development of macro cracks in concrete and prestressed CFRP is an effective method to improve the toughness of concrete, reduce strengthening cost and meanwhile enhance bearing capacity of concrete beams.


2013 ◽  
Vol 838-841 ◽  
pp. 1009-1013 ◽  
Author(s):  
Shuang Yang Zhang ◽  
Qian Hui Pu ◽  
Ren Da Zhao ◽  
Zhou Shi

Basket handle arch bridge with reinforced concrete shortens the distance between the arch rib compared with parallel arch rib bridge, improves the lateral stability, predecessors have done a lot of research on basket handle narrow arch bridge, but the study of wide span arch bridge is insufficient, conduct load test on a wide basket handle arch bridge which 33m wide and mainspan is 90m, the test results show that the large width-span ratio arch bridge has higher bearing capacity, but vertical bearing capacity is not improved, the dynamic coefficient increases when the speed is higher than 30km/h, the measured dynamic coefficient at jumpy driving is relatively large, the dynamic coefficient is significant when jumpy driving speed is 10~15km/h.


2017 ◽  
Vol 9 (5) ◽  
pp. 507-519
Author(s):  
Justas Šlaitas

The research was made on condition assessment of flexed reinforced concrete structures, strengthened with fibre reinforced polymers, in fracture stage. Universal bearing capacity calculation method based on limit normal section crack depth was proposed. This paper confirms the hypothesis of triangular concrete’s compressive zone chart usage for flexural strength calculation, without tensile concrete above crack evaluation. There is established connection between crack depth and FRP stress­strain, which allows to decide about structures bearing capacity reserve. The calculation results are confirmed with experimental studies of 73 reinforced concrete beams, strengthened with carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) sheets, plates, strips and rods, taken from different researches. Furthermore, recommended limits of strengthening with FRP were proposed.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


2018 ◽  
Vol 931 ◽  
pp. 379-384
Author(s):  
Yuri V. Ivanov ◽  
Yuri F. Rogatnev ◽  
Igor I. Ushakov

The paper considers the results of the experimental study of the reinforced concrete beams strengthened by carbon fiber reinforced plastics (the CFRP). Eight reinforced concrete beams of the 80x160 mm section and 1500 mm designed span have been manufactured and tested. The influence of the number of the CFRP layers (strengthening power) on bearing capacity and rigidity under the static loading of beams in the thirds of the span has been studied. The results obtained indicate the increase in bearing capacity of the reinforced beams from 24% up to 55% and the increase in rigidity by 45% for the commonly adopted limiting state, i.e. achieving ultimate deformations in concrete of the compressed zone). The paper underlines the need for using anchor devices in the form of U-shaped binders to ensure the efficiency of the given method of strengthening.


Sign in / Sign up

Export Citation Format

Share Document