Host-virus and virus-virus interactions in broad host range alphabaculoviruses: implications for the development of virus-based insecticides

2021 ◽  
Author(s):  
◽  
Isabel María Belda García

This thesis examined the insecticidal potential of the broad host range baculovirus Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV), and this interaction with Helicoverpa armigera multiple nucleopolyhedrovirus (HaMNPV) during the coinfection of a shared host. The results provide greater understanding of host-virus and virus-virus interactions in broad host range alphabaculoviruses that should help define effective strategies for pest control in field and greenhouse crops. First, the insecticidal activity and stability of the two closely related alphabaculovirus isolates, HearMNPV and MbMNPV derived from the commercial bioinsecticide Mamestrin®, were evaluated in a permissive (Spodoptera exigua) and a semi-permissive host (Spodoptera littoralis). The genetic structure of MbMNPV derived from the biological insecticideMamestrin® was then studied with the aim of assessing the insecticide properties of the genotypic variants comprised this wild-type isolate. Finally, interactions between two phylogenetically closely related viruses during coinfection of a shared host were analysed. In conclusion, the results obtained in this thesis contribute to a better understanding of the interactions between viruses and their hosts, which can contribute to the development of baculovirus-based insecticides and to design of effective strategies for the control of lepidopteran pest complexes.

2005 ◽  
Vol 386 (9) ◽  
Author(s):  
Karin Welfle ◽  
Florencia Pratto ◽  
Rolf Misselwitz ◽  
Joachim Behlke ◽  
Juan C. Alonso ◽  
...  

AbstractThe dimeric regulatory protein wild-type ω (wt ω


2011 ◽  
Vol 77 (8) ◽  
pp. 2648-2655 ◽  
Author(s):  
Rahmi Lale ◽  
Laila Berg ◽  
Friederike Stüttgen ◽  
Roman Netzer ◽  
Marit Stafsnes ◽  
...  

ABSTRACTThe induciblePmpromoter integrated into broad-host-range plasmid RK2 replicons can be fine-tuned continuously between the uninduced and maximally induced levels by varying the inducer concentrations. To lower the uninduced background level while still maintaining the inducibility for applications in, for example, metabolic engineering and synthetic (systems) biology, we report here the use of mutations in thePmDNA region corresponding to the 5′ untranslated region of mRNA (UTR). Five UTR variants obtained by doped oligonucleotide mutagenesis and selection, apparently reducing the efficiency of translation, were all found to display strongly reduced uninduced expression of three different reporter genes (encoding β-lactamase, luciferase, and phosphoglucomutase) inEscherichia coli. The ratio between induced and uninduced expression remained the same or higher compared to cells containing a corresponding plasmid with the wild-type UTR. Interestingly, the UTR variants also displayed similar effects on expression when substituted for the native UTR in another and constitutive promoter,P1(Pantitet), indicating a broad application potential of these UTR variants. Two of the selected variants were used to control the production of the C50carotenoid sarcinaxanthin in an engineered strain ofE. colithat produces the precursor lycopene. Sarcinaxanthin is produced in this particular strain by expressing threeMicrococcus luteusderived genes from the promoterPm. The results indicated that UTR variants can be used to eliminate sarcinaxanthin production under uninduced conditions, whereas cells containing the corresponding plasmid with a wild-type UTR produced ca. 25% of the level observed under induced conditions.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 660
Author(s):  
Belda ◽  
Beperet ◽  
Williams ◽  
Caballero

Phylogenetic analyses suggest that Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) may be strains of the same virus species. Most of the studies comparing their biological activities have been performed in their homologous hosts. A comparison of host range and stability in alternative hosts was performed. The host range of these viruses was compared using high concentrations of inoculum to inoculate second instars of six species of Lepidoptera. One semi-permissive host (Spodoptera littoralis) and one permissive host (S. exigua) were then selected and used to perform six serial passages involving a concentration corresponding to the ~25% lethal concentration for both viruses. Restriction endonuclease analysis showed fragment length polymorphisms in every host-virus system studied. In S. littoralis, serial passage of MbMNPV resulted in decreased pathogenicity and an increase in speed-of-kill, whereas no significant changes were detected for HearMNPV with respect to the initial inoculum. In contrast, both viruses showed a similar trend in S. exigua. These results highlight the low genetic diversity and a high phenotypic stability of HearMNPV with respect to the original inoculum after six successive passages in both insect hosts. This study concludes that host-baculovirus interactions during serial passage are complex and the process of adaptation to a novel semi-permissive host is far from predictable.


2005 ◽  
Vol 73 (4) ◽  
pp. 1947-1953 ◽  
Author(s):  
Daniel H. Fine ◽  
Kabilan Velliyagounder ◽  
David Furgang ◽  
Jeffrey B. Kaplan

ABSTRACT Cells of the gram-negative periodontopathogen Actinobacillus actinomycetemcomitans express a surface-exposed, outer membrane autotransporter protein, designated Aae, which has been implicated in epithelial cell binding. We constructed a mutant strain of A. actinomycetemcomitans that contained a transposon insertion in the Aae structural gene (aae) and tested the mutant to determine its ability to bind to buccal epithelial cells (BECs) isolated from healthy volunteers. Significantly fewer mutant cells than wild-type cells bound to BECs. A broad-host-range plasmid that contained an intact aae gene driven by a heterologous tac promoter restored the ability of the mutant strain to bind to BECs at wild-type levels. This plasmid also conferred upon Escherichia coli the ability to express the Aae protein on its surface and to bind to human BECs. Aae-expressing E. coli also bound to BECs isolated from six Old World primates but not to BECs isolated from four New World primates or nine other nonprimate mammals, as well as to human gingival epithelial cells but not to human pharyngeal, palatal, tongue, bronchial, or cervical epithelial cells. Our findings indicate that Aae mediates binding of A. actinomycetemcomitans to BECs from humans and Old World primates and that this process may contribute to the host range specificity and tissue tropism exhibited by this bacterium.


2003 ◽  
Vol 66 (2) ◽  
pp. 220-225 ◽  
Author(s):  
JEAN M. WHICHARD ◽  
NAMALWAR SRIRANGANATHAN ◽  
F. WILLIAM PIERSON

The bacteriophage Felix O1, a member of Myoviridae, is specific for, and possesses a broad host range within, the genus Salmonella. This work explores a Felix O1 phage-based intervention for Salmonella enterica serotype Typhimurium DT104 that is potentially applicable at several stages of animal production and processing. A variant of Felix O1 was obtained that produces a larger, clearer plaque phenotype (LP) on Salmonella Typhi than wild-type Felix O1 (WT) does, not unlike r mutants of phage T4. LP exhibited slightly more extensive overall suppression of Salmonella Typhi in brain heart infusion (BHI) broth, as ascertained on the basis of culture turbidity (optical density at 600 nm). Both phage variants suppressed log phase BHI broth cultures containing 8.2 × 106 CFU of Salmonella Typhimurium DT104 per ml. A PFU/CFU ratio of 1.0 was effective for WT and LP, whereas increasing the PFU/CFU ratio to 5.0 did not increase suppression. Untreated Salmonella-contaminated frankfurters were compared with treated samples (PFU/CFU ratio, 1.9 × 104) to test WT and LP for their ability to suppress Salmonella growth on chicken frankfurters contaminated with 300 CFU of Salmonella Typhimurium DT104. Suppression levels of 1.8 and 2.1 log units were achieved with WT and LP, respectively (P = 0.0001), but no difference was found between the performances of the two variants (P = 0.5088).


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S801-S801
Author(s):  
Jose Alexander ◽  
Daniel Navas ◽  
Marly Flowers ◽  
Angela Charles ◽  
Amy Carr

Abstract Background With the rise of the antimicrobial resistance between different genera and species of bacteria, Phage Therapy is becoming a more realistic and accessible option for patients with limited or no antimicrobial options. Being able to have rapid access to a collection of clinical active phages is key for rapid implementation of phage therapy. The Microbiology Department at AdventHealth Orlando is performing routine screening of environmental and patient samples for isolation of phages against non-fermenting Gram negative bacteria to develop a Phage Bank. Methods Protocols for phage isolation from environmental sources such as lakes, rivers and sewers and clinical samples were developed. A series of respiratory, throat, stool and urine samples were processed following an internal protocol that includes centrifugation, filtration and enrichment. Clinical samples were centrifugated for 10 minutes, filtered using 0.45µm centrifugation filters, seeded with targeted host bacteria (clinical isolates) and incubated at 35°C for 24 hours. The enriched samples were centrifugated and filtered for a final phage enriched solution. Screening and isolation were performed using the Gracia method over trypticase soybean agar (TSA) for plaque morphology and quantification. Host range screening of other clinical isolates of P. aeruginosa was performed using the new isolated and purified phages. Results 4 lytic phages against clinical strains of P. aeruginosa from patient with diagnosis of cystic fibrosis (CF), were isolated and purified from 4 different respiratory samples, including sputum and bronchial alveolar lavage. All phages showed phenotypical characteristics of lytic activity. 1 phage was active against 4 strains of P. aeruginosa, 1 phage was active against 2 strains of P. aeruginosa and the remaining 2 phages were active only against the initial host target strain. Conclusion With this study we demonstrated the potential use of clinical samples as source for isolating active bacteriophages against clinically significant bacteria strains. Clinical samples from vulnerable population of patients with chronic infections are part of our routine “phage-hunting” process to stock and grow our Phage Bank project for future clinical use. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 14 (4) ◽  
pp. 325
Author(s):  
David Sáez Moreno ◽  
Zehra Visram ◽  
Michele Mutti ◽  
Marcela Restrepo-Córdoba ◽  
Susana Hartmann ◽  
...  

Due to the rapid spread of antibiotic resistance, and the difficulties of treating biofilm-associated infections, alternative treatments for S. aureus infections are urgently needed. We tested the lytic activity of several wild type phages against a panel of 110 S. aureus strains (MRSA/MSSA) composed to reflect the prevalence of S. aureus clonal complexes in human infections. The plaquing host ranges (PHR) of the wild type phages were in the range of 51% to 60%. We also measured what we called the kinetic host range (KHR), i.e., the percentage of strains for which growth in suspension was suppressed for 24 h. The KHR of the wild type phages ranged from 2% to 49%, substantially lower than the PHRs. To improve the KHR and other key pharmaceutical properties, we bred the phages by mixing and propagating cocktails on a subset of S. aureus strains. These bred phages, which we termed evolution-squared (ε2) phages, have broader KHRs up to 64% and increased virulence compared to the ancestors. The ε2-phages with the broadest KHR have genomes intercrossed from up to three different ancestors. We composed a cocktail of three ε2-phages with an overall KHR of 92% and PHR of 96% on 110 S. aureus strains and called it PM-399. PM-399 has a lower propensity to resistance formation than the standard of care antibiotics vancomycin, rifampicin, or their combination, and no resistance was observed in laboratory settings (detection limit: 1 cell in 1011). In summary, ε2-phages and, in particular PM-399, are promising candidates for an alternative treatment of S. aureus infections.


Sign in / Sign up

Export Citation Format

Share Document