Carbon/nitrogen relations in C3 cereal crops within a climate change context: implications on grain yield and quality

2021 ◽  
Author(s):  
◽  
Sinda Ben Mariem

In a context of the expanding world population and global climate change, food security is becoming a challenge for worldwide society. To meet the increasing global agricultural demands, crop yields enhancement has been attempted since the green revolution and cereals production, in particular wheat, has increased since then by releasing high yielding new cultivars. However, improvement in crop yields has slowed since the 1990s and the recent gains in global crop production fall short of the expected demands mainly due to global warming. At a global scale, the relatively decrease in wheat production is principally because of the adverse effects of abiotic stresses that are increasing in intensity and frequency under climate change scenario. Low water availability and extreme temperatures will negatively affect the growth and productivity of major crop species including durum wheat. In the Mediterranean area, the process of grain filling is coinciding with dry and hot environmental conditions affecting final yield quantitatively and qualitatively as well. Moreover, studies conducted recently remarked that grain mineral composition is shifted and total protein content in grains is reduced when durum wheat grows in the presence of high CO2 concentration ([CO2]). It is clear that commercialised wheat genotypes are becoming more vulnerable to global climate change which is affecting not only grain yield but also quality. Thus, the understanding of physiological mechanisms that enable plants to adapt to drought stress and increasing atmospheric [CO2] could help in screening and selection of genotypes with suitable grain yield and quality, and using these traits in breeding programs. On the other hand, the increase in nitrogen fertilizers application in wheat crops is consequently stimulating plant growth and increasing grain yield, nitrogen and protein concentration in kernels ensuring, thereby, good bread/pasta making quality and mitigating the negative effect of changing climate on grain production. Nevertheless, the excessive nitrogen supply can lead to environment pollution and may probably accentuate climate warming by increasing nitrous oxide (N2O) emission. For this reason, optimizing nitrogen use efficiency (NUE) is a tool to increase crop yields while preserving the environment. Within this context, the main objective of this work is the use of new wheat selection criteria to identify, in an integrative manner, genotypes and crop management practices conferring high nitrogen use efficiency to reach higher yield and better grain quality under increasing [CO2] and low water availability. For this purpose, in the first chapter (I), a meta-analysis study was carried out to provide an overview of the effects and interactions of multiple climate factors, specifically high [CO2], drought, and elevated temperature on the productivity and grain quality of C3 cereals. Findings presented in this chapter showed that despite of the positive effect of elevate [CO2] on grain yield, this trait seems to be mitigated by heat and drought stress. Grain quality was also impacted by changing climate, characterized by an increase in carbohydrates and decrease in protein and minerals. In the second chapter (II), we assessed the grain quality trait of wheat archived samples since 1850 collected from many countries to evaluate the nutritional quality changes in grain under changing climate. This study confirmed the results foundin the previous chapter and showed an imbalance in carbohydrate/protein content marked after the 60s, adding to an impoverishment in minerals. Yield results from Broadbalk wheat experiment in Rothamsted (UK) showed an improvement of wheat yield since the green revolution attributed mainly to the introducing of semi-dwarf high yielding genotypes. In chapter (III), to investigate the impact of nitrogen fertilization on yield and grain quality, an experiment was performed where 20 durum wheat genotypes were fertilized since anthesis with two N fertilization levels under greenhouse conditions. Within these genotypes, only 6 lines were selected with high and low nitrogen use efficiency to characterize agronomic and quality traits. As expected, nitrogen supply increased grain yield while no effect was detected in thousand-grain weight. Grain soluble sugars, gluten fractions, mineral composition, and polyphenol concentrations were also improved by N application. The comparison among genotypes revealed that high yielding genotypes had higher grain carbohydrate concentrations while higher concentrations in grain minerals, gluten fractions, and polyphenols were recorded in low yielding cultivars. Finally, in chapter (IV), 4 durum wheat genotypes and 6 tritordeum lines with higher and lower NUE were exposed to high [CO2] and drought stress in greenhouses, in order to characterize post-anthesis nutrient remobilization from leaves and ears sustaining grain filling, together with agronomic characterization under such conditions. It seems that the increase of atmospheric [CO2] could attenuate the negative effect of drought on grain yield. Carbon and nitrogen metabolism in leaves and ears were altered under high CO2 enrichment and larger effect was observed when it was combined with drought, and the relative contribution of each organ to grain filling was strongly affected by growing conditions.

2015 ◽  
Vol 52 (2) ◽  
pp. 314-329 ◽  
Author(s):  
ANITA IERNA ◽  
GRAZIA MARIA LOMBARDO ◽  
GIOVANNI MAUROMICALE

SUMMARYLimited information is available concerning the influence of nitrogen fertilization jointly on yield response, nitrogen use efficiency (NUE) and grain quality of durum wheat under semi-arid Mediterranean conditions. The study focused on evaluating, through a systematic study, over three seasons in southern Italy the effects of three nitrogen fertilization rates (0, 80 and 160 kg N ha−1– N0, N80and N160), on grain yield, yield components, nitrogen efficiency indices and grain quality characteristics of three durum wheat genotypes (‘Creso’, ‘Trinakria’ and ‘Line 25’) from different breeding eras to achieve a more sustainable fertilization management of the durum wheat crop. We found that nitrogen fertilization at 80 kg N ha−1was able to maximize the yield performances (2.1 t ha−1year–1) of the crop and keep NUE index at an acceptable level (16.3 kg kg−1). On the other hand, nitrogen fertilization at 160 kg N ha−1improved grain quality measured through protein (up to 14.3%) and dry gluten concentration (up to 12.8%), but had a detrimental effect on grain yield and nitrogen efficiency. Among the genotypes studied, ‘Trinakria’ showed the greatest potential to utilize nitrogen fertilization to improve grain yield and NUE (at N80) and quality (at N160), ‘Line 25’ made good use of N80both for yield and quality, whereas ‘Creso’ proved wholly unresponsive to nitrogen. The effect of N fertilization on grain yield and N use efficiency depends on rainfall distribution, giving the best results when about 80% of total rainfall occurred from sowing to heading. Overall, our data show that in seasons with regular rainfall in quantity and distribution, combining no more than 80 kg ha−1of nitrogen fertilization with genotypes characterized by a more efficient response to nitrogen, is a useful tool to improve the agronomic and quality performance of the crop, ensuring, at the same time, a more environment-friendly nitrogen fertilization.


2020 ◽  
Vol 12 (14) ◽  
pp. 5610
Author(s):  
Alireza Pour-Aboughadareh ◽  
Reza Mohammadi ◽  
Alireza Etminan ◽  
Lia Shooshtari ◽  
Neda Maleki-Tabrizi ◽  
...  

Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1708 ◽  
Author(s):  
Kenny Paul ◽  
János Pauk ◽  
Zsuzsanna Deák ◽  
László Sass ◽  
Imre Vass

We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivumL.) cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI) and performance (PI) indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves is correlated with grain yield and green biomass, respectively. In addition, secondary trait associated mechanisms like delayed senescence and higher water-use efficiency also contribute to biomass stability. Our studies further prove that photosynthetic parameters could be used to characterize environmental stress responses.


Author(s):  
Teshome Mesfin ◽  
Serkalem Tamru ◽  
Yeshibir Aklilu ◽  
Dagne Bekele

Wheat requirement of nitrogen for plant growth, and crop yields and quality depends upon substantial N inputs. Therefore, a field experiment was carried out at Gimbichu district in 2017 and 2018 main cropping season with the objective of evaluating the overall performance of applying slow-release/UREAstable fertilizer over the conventional urea fertilizer for durum wheat production, and to determine optimum rates of slow-release urea fertilizer for wheat productivity. The treatments consisted of Control, 90 kg N ha-1 from conventional urea applied in split, 90 kg N ha-1 from UREAstable applied once at planting, 90 kg N ha-1 from UREAstable applied in split, 45 kg N ha-1 from UREAstable applied once at planting, 45 kg N ha-1 from UREA stable applied in split form, 135 kg N ha-1 from UREA stable applied in split form, 135 kg N ha-1 from conventional UREA applied in split form and 135 kg N ha-1 from UREAstable applied once at planting. The results revealed that plant height, spike length, Tiller number, grain yield, biomass yield, harvest index and grain and straw uptake were significantly (P<0.05) affected by the application of slow release and conventional urea fertilizer. The highest spike length (3.8cm), Tiller number (2.1), grain yield (2205 kg ha-1), biomass yield (6968 kg ha-1) and nitrogen grain straw uptake (35.6 kg N ha-1) were recorded from 135kg N ha-1 urea stable fertilizer applied in split form followed by application of 135 kg N ha-1 conventional urea fertilizer applied in split form. While, maximum straw nitrogen uptake was obtained from application of 135 kg N ha-1 conventional urea fertilizer applied in split form. Therefore, taking the findings of the present study consideration it may be concluding that farmers can use 135 kg N ha-1 UREAstable fertilizer to improve nitrogen use efficiency and productivity of wheat in the study area in addition to conventional urea fertilizer. However, further research may be required at various locations to come up with an inclusive recommendation.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1052
Author(s):  
Sinda Ben Mariem ◽  
David Soba ◽  
Bangwei Zhou ◽  
Irakli Loladze ◽  
Fermín Morales ◽  
...  

Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.


Sign in / Sign up

Export Citation Format

Share Document