scholarly journals Effects of Drought Stress on Some Agronomic and Morpho-Physiological Traits in Durum Wheat Genotypes

2020 ◽  
Vol 12 (14) ◽  
pp. 5610
Author(s):  
Alireza Pour-Aboughadareh ◽  
Reza Mohammadi ◽  
Alireza Etminan ◽  
Lia Shooshtari ◽  
Neda Maleki-Tabrizi ◽  
...  

Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.

Genetika ◽  
2016 ◽  
Vol 48 (2) ◽  
pp. 717-727
Author(s):  
Tofig Allahverdiyev

Field experiment was conducted to study the effect of water stress on yield and yield traits of durum wheat and bread wheat genotypes. Water stress caused significant reduction in plant height (PH), peduncle length (PL), spike number/m2(SN), spike length (SL), spike width (SW), spikelets number/spike (SNS), spike mass (SM), grain number/spike (GNS), grain mass/spike (GMS), biological yield (BY), thousand kernel mass (TKM), grain yield (GY) and harvest index (HI). Wheat traits such as SN, SM, BY, TKM, GY were more vulnerable to drought stress. Positive significant correlation of GY with SN, BY and HI under rain-fed condition was found. Genotypes of durum wheat were more sensitive to drought than that bread wheat genotypes. The significant and positive correlation of GY with Stress Tolerance Index (STI), Mean Productivity (MP) and Geometric Mean Productivity (GMP) indicated that these indices were more effective in identifying high yielding, drought tolerance genotypes.


2020 ◽  
Vol 115 (1) ◽  
pp. 105
Author(s):  
Sara KHOSRAVI ◽  
Reza AZIZINEZHAD ◽  
Amin BAGHIZADEH ◽  
Mahmood MALEKI

<p>This study was carried out on grain yield in wheat genotypes with the aim of assessing genetic potential of drought tolerance. The experiment was performed as split plot in the form of randomized complete block design with three replications under normal and drought stress conditions with 32 genotypes. Based on grain yield, and under the condition of non-stress and drought stress, 5 drought tolerance indices are estimated including Tolerance Index (TOL), Stress Tolerance (STI), Mean Productivity (MP), Geometric Mean (GMP) and, Harmonic Mean (HM) for all kinds of genotypes. The analysis of yield correlation and drought tolerance indices in two environments indicated that STI, MP, GMP, HM indices were the most suitable parameters for screening wheat genotypes. Principal components analysis exhibited that the 83 % of first principal component and the 15 % of second one justified the variation of the initial data. Drawing bi-plot diagram declared that Sabalan, Shabrang, Aria, Azar, Azadi, and T2 genotypes were highly functional and resistant to drought stress.</p>


2017 ◽  
Vol 62 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Reza Mohammadi ◽  
Abdolvahab Abdulahi

Objectives of this study were to assess durum wheat genotypes for drought tolerance and to study relationships among different drought tolerance indices under different drought stress conditions. The total of twenty-two durum wheat lines was evaluated in a RCBD experiment with three replications for three cropping seasons (2008-2009; 2009-2010 and 2010-2011). Different drought indices such as tolerance (TOL), mean productivity (MP), mean relative performance (MRP), stress susceptibility index (SSI), modified severity stress index (SSSI), geometric mean productivity (GMP), stress tolerance index (STI), yield stability index (YSI), relative efficiency index (REI) and drought response index (DRI) were determined based on yields under drought and non-drought conditions. The studied genotypes showed considerable variation in performance and tolerated various drought conditions that could be exploited in the durum wheat breeding program. The screening of genotypes for drought tolerance in environments with a greater value of stress intensity (SI) will be more efficient in the grouping of indices and genotype selection. The indices were classified into groups (G1 and G2). The group G1, which consisted of the indices REI, STI, MRP, GMP, DRI and YSI, distinguished genotypes with higher yield in different levels of drought stress. The durum breeding line nos. 1, 11, 10, 13, 8, 9, and 12 were superior based on the group G1 and could be regarded for further evaluation in drought-prone environments.


2011 ◽  
Vol 3 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Mina ABARSHAHR ◽  
Babak RABIEI ◽  
Habibollah SAMIZADEH LAHIGI

In order to compare different rice genotypes grown under drought stress conditions a field experiment was conducted. In this study thirty different genotypes of native, breeded and upland cultivars were evaluated. Analysis of variance showed significant differences among genotypes in respect of all vegetative and morphological traits. Genotypes were devided into three groups by cluster analysis based on all studied traits with minimum variance method (Wards Method). The total average indicates significant differences among groups in respect of all morphological and physiological characteristics. In addition, eight drought stress tolerance indices including: sensitivity to stress index (SSI), drought response index (DRI), relative drought index (RDI), tolerance index (TOL), mean productivity index (MP), stress tolerance index (STI), geometric mean productivity index (GMP) and harmonic mean index (HM) were calculated according to their grain yield under drought stress and normal conditions. In general, results of this experimnet revealed that, among rice cultivars Domsephid, Deylamany, Hasansaraei, Sadri, Anbarboo and Domsiah had the highest sensitivity referring to drought stress and produced the lowest grain yield. Also, genotypes of IR24 (breeded of IRRI), Nemat, Sephidroud, Kadoos and Bejar (breeded of Iran) and Vandana, upland cultivar (originally from India) had the highest tolerance to drought stress and produced the highest grain yield. In conclusion, it was suggested that, these cultivars are suitable for drought stress conditions and are appropriate for hybridization with the aim of increasing drought tolerance.


1978 ◽  
Vol 26 (3) ◽  
pp. 233-249
Author(s):  
J.H.J. Spiertz ◽  
H. van de Haar

The crop performance of semi-dwarf wheat cv. (Maris Hobbit) was compared with a standard-ht. cv. (Lely) at various levels of N supply. The grain yields of Maris Hobbit were considerably higher due to a higher number of grains and a heavier grain wt. Owing to the higher grain yield and a lower stem wt. the harvest index of Maris Hobbit was higher than that of Lely (0.47 and 0.40, resp.). The content of water-soluble carbohydrates in the stems of both cv. appeared to be very high until 3 wk after anthesis, despite the occurrence of low light intensities. Lely used more assimilates for structural stem material than did Maris Hobbit. Quantity and date of N application greatly affected grain number, but affected grain wt. to a lesser extent. Thus within each cv. grain number/m2 was the main determinant of grain yield. Late N dressings promoted photosynthetic production, grain wt. and CP content of the grain. The low CP contents of the grain were attributed to the low temp. during the grain-filling period. The distribution of N within the plant was only slightly influenced by N dressings and cv. differences. N harvest index ranged from 0.74 to 0.79. Grain N was derived from the vegetative organs (63-94%) and from uptake after anthesis (6-37%). The importance of carbohydrate and N economy for grain yield are discussed. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
Alireza Daneshvar Hosseini ◽  
Ali Dadkhodaie ◽  
Bahram Heidari ◽  
Seyed Abdolreza Kazemeini

Wheat is the most important crop in the world which faces the global problem of drought. Its production is affected by water deficit after pollination in arid and semi-arid regions. An experiment was conducted to assess tolerance of 39 bread wheat genotypes to end-season drought. The experimental design was Randomized Complete Block in three replications and the drought tolerance indices (SSI, STI, TOL, MP and GMP) were calculated for grain yield. The cultivar Cambin produced the highest grain yield under normal irrigation by 369.19 g m-2 while Arina had the highest yield (223.35 g m-2) under drought stress conditions. Stress tolerance (TOL) introduced Hindukesh, Iran2355 and Iran6476 as drought tolerant genotypes. Also, results showed that grain yield under stress and non-stress environments were highly correlated with the mean productivity (MP), the geometric mean productivity (GMP) and tolerance index (TOL). These genotypes could be further used in crosses for genetic studies and breeding programs for improvement tolerance to drought.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1708 ◽  
Author(s):  
Kenny Paul ◽  
János Pauk ◽  
Zsuzsanna Deák ◽  
László Sass ◽  
Imre Vass

We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivumL.) cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI) and performance (PI) indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves is correlated with grain yield and green biomass, respectively. In addition, secondary trait associated mechanisms like delayed senescence and higher water-use efficiency also contribute to biomass stability. Our studies further prove that photosynthetic parameters could be used to characterize environmental stress responses.


2021 ◽  
Author(s):  
◽  
Sinda Ben Mariem

In a context of the expanding world population and global climate change, food security is becoming a challenge for worldwide society. To meet the increasing global agricultural demands, crop yields enhancement has been attempted since the green revolution and cereals production, in particular wheat, has increased since then by releasing high yielding new cultivars. However, improvement in crop yields has slowed since the 1990s and the recent gains in global crop production fall short of the expected demands mainly due to global warming. At a global scale, the relatively decrease in wheat production is principally because of the adverse effects of abiotic stresses that are increasing in intensity and frequency under climate change scenario. Low water availability and extreme temperatures will negatively affect the growth and productivity of major crop species including durum wheat. In the Mediterranean area, the process of grain filling is coinciding with dry and hot environmental conditions affecting final yield quantitatively and qualitatively as well. Moreover, studies conducted recently remarked that grain mineral composition is shifted and total protein content in grains is reduced when durum wheat grows in the presence of high CO2 concentration ([CO2]). It is clear that commercialised wheat genotypes are becoming more vulnerable to global climate change which is affecting not only grain yield but also quality. Thus, the understanding of physiological mechanisms that enable plants to adapt to drought stress and increasing atmospheric [CO2] could help in screening and selection of genotypes with suitable grain yield and quality, and using these traits in breeding programs. On the other hand, the increase in nitrogen fertilizers application in wheat crops is consequently stimulating plant growth and increasing grain yield, nitrogen and protein concentration in kernels ensuring, thereby, good bread/pasta making quality and mitigating the negative effect of changing climate on grain production. Nevertheless, the excessive nitrogen supply can lead to environment pollution and may probably accentuate climate warming by increasing nitrous oxide (N2O) emission. For this reason, optimizing nitrogen use efficiency (NUE) is a tool to increase crop yields while preserving the environment. Within this context, the main objective of this work is the use of new wheat selection criteria to identify, in an integrative manner, genotypes and crop management practices conferring high nitrogen use efficiency to reach higher yield and better grain quality under increasing [CO2] and low water availability. For this purpose, in the first chapter (I), a meta-analysis study was carried out to provide an overview of the effects and interactions of multiple climate factors, specifically high [CO2], drought, and elevated temperature on the productivity and grain quality of C3 cereals. Findings presented in this chapter showed that despite of the positive effect of elevate [CO2] on grain yield, this trait seems to be mitigated by heat and drought stress. Grain quality was also impacted by changing climate, characterized by an increase in carbohydrates and decrease in protein and minerals. In the second chapter (II), we assessed the grain quality trait of wheat archived samples since 1850 collected from many countries to evaluate the nutritional quality changes in grain under changing climate. This study confirmed the results foundin the previous chapter and showed an imbalance in carbohydrate/protein content marked after the 60s, adding to an impoverishment in minerals. Yield results from Broadbalk wheat experiment in Rothamsted (UK) showed an improvement of wheat yield since the green revolution attributed mainly to the introducing of semi-dwarf high yielding genotypes. In chapter (III), to investigate the impact of nitrogen fertilization on yield and grain quality, an experiment was performed where 20 durum wheat genotypes were fertilized since anthesis with two N fertilization levels under greenhouse conditions. Within these genotypes, only 6 lines were selected with high and low nitrogen use efficiency to characterize agronomic and quality traits. As expected, nitrogen supply increased grain yield while no effect was detected in thousand-grain weight. Grain soluble sugars, gluten fractions, mineral composition, and polyphenol concentrations were also improved by N application. The comparison among genotypes revealed that high yielding genotypes had higher grain carbohydrate concentrations while higher concentrations in grain minerals, gluten fractions, and polyphenols were recorded in low yielding cultivars. Finally, in chapter (IV), 4 durum wheat genotypes and 6 tritordeum lines with higher and lower NUE were exposed to high [CO2] and drought stress in greenhouses, in order to characterize post-anthesis nutrient remobilization from leaves and ears sustaining grain filling, together with agronomic characterization under such conditions. It seems that the increase of atmospheric [CO2] could attenuate the negative effect of drought on grain yield. Carbon and nitrogen metabolism in leaves and ears were altered under high CO2 enrichment and larger effect was observed when it was combined with drought, and the relative contribution of each organ to grain filling was strongly affected by growing conditions.


2021 ◽  
Author(s):  
Md Habib ◽  
Md Mannan ◽  
Md Karim ◽  
Md Miah ◽  
Hari Singh

Abstract Crop productivity is greatly affected by drought stress. Understanding the drought tolerance capability of the crop varieties available in a country is the foremost consideration for drought adaptation. The objective of this research work was to examine the drought tolerance potentiality of 5 cultivated barley varieties (BARI Barley5, BARI Barley6, BARI Barley7, BARI Barley8 and BARI Barley9) through calculating drought tolerance indices. A completely randomized design (CRD) with three replications was followed in the experiment, where crops were grown under control (80% of FC) and water deficit environment (50% of FC). Stress Tolerance (TOL), Mean Productivity (MP), Geometric Mean Productivity (GMP), Stress Susceptibility Index (SSI), Stress Tolerance Index (STI), Harmonic Mean (HAM), Yield Index (YI) and Yield Stability Index (YSI) were calculated based on grain yield under control and drought conditions. BARI Barley7 and BARI Barley8 were the most tolerant variety and BARI Barley9 considered as susceptible based on TOL and SSI. Drought tolerance indices like MP, HAM, GMP, TOL as well as STI were showed a high correlation with grain yield under both conditions and were recognized as appropriate indices to identify varieties with high grain yield and low sensitivity to drought stress.


Sign in / Sign up

Export Citation Format

Share Document