scholarly journals The Effect of Ground Motion Selection Methods for Seismic Design of Tall Buildings: A Case Study of Mandalay City

2020 ◽  
Vol 17 (12) ◽  
pp. 1348-1355
Author(s):  
Yan Naung KO ◽  
Teraphan ORNTHAMMARATH

The near-fault earthquakes ground motion usually observed a few kilometers away from the active faults generally contains high energetic velocity pulses as a consequence of directivity effects. Mandalay city is located 8 km away from the Sagaing fault, and the comparative study is conducted to evaluate the structural response of 3 different types of Reinforced Concrete buildings - 4-story, 10-story, and 16-story buildings, respectively. These buildings are subjected to bi-directional ground motions selected from both far-field and pulse-like near-fault earthquakes. The far-field earthquakes produce less seismic demand on the buildings when compared to the near-fault earthquakes, where the ratio of the fundamental period of the building to the pulse period is significant. Comparing 2 ground motion selection and scaling methods of Tall Building Initiative guidelines - TBI (2010) and TBI (2017), the latter approach provides a more meaningful definition of intensity measure and allows reducing some conservatism. The structural response obtained from the design Equivalent Lateral Force (ELF) and Response Spectrum Analysis (RSA) is compared with the code-based linear Response History Analysis (RHA) results.

2018 ◽  
Vol 10 (12) ◽  
pp. 4659 ◽  
Author(s):  
Yabin Chen ◽  
Longjun Xu ◽  
Xingji Zhu ◽  
Hao Liu

For seismic resilience-based design (RBD), a selection of recorded time histories for dynamic structural analysis is usually required. In order to make individual structures and communities regain their target functions as promptly as possible, uncertainty of the structural response estimates is in great need of reduction. The ground motion (GM) selection based on a single target response spectrum, such as acceleration or displacement response spectrum, would bias structural response estimates leading significant uncertainty, even though response spectrum variance is taken into account. In addition, resilience of an individual structure is not governed by its own performance, but depends severely on the performance of other systems in the same community. Thus, evaluation of resilience of a community using records matching target spectrum at whole periods would be reasonable because the fundamental periods of systems in the community may be varied. This paper presents a GM selection approach based on a probabilistic framework to find an optimal set of records to match multiple target spectra, including acceleration and displacement response spectra. Two major steps are included in that framework. Generation of multiple sub-spectra from target displacement response spectrum for selecting sets of GMs was proposed as the first step. Likewise, the process as genetic algorithm (GA), evolvement of individuals previously generated, is the second step, rather than using crossover and mutation techniques. A novel technique improving the match between acceleration response spectra of samples and targets is proposed as the second evolvement step. It is proved computationally efficient for the proposed algorithm by comparing with two developed GM selection algorithms. Finally, the proposed algorithm is applied to select GM records according to seismic codes for analysis of four archetype reinforced concrete (RC) frames aiming to evaluate the influence of GM selection considering two design response spectra on structural responses. The implications of design response spectra especially the displacement response spectrum and GM selection algorithm are summarized.


2021 ◽  
Vol 11 (3) ◽  
pp. 1290
Author(s):  
Santiago Mota-Páez ◽  
David Escolano-Margarit ◽  
Amadeo Benavent-Climent

Reinforced concrete (RC) frame structures with open first stories and masonry infill walls at the upper stories are very common in seismic areas. Under strong earthquakes, most of the energy dissipation demand imposed by the earthquake concentrates in the first story, and this eventually leads the building to collapse. A very efficient and cost-effective solution for the seismic upgrading of this type of structure consists of installing hysteretic dampers in the first story. This paper investigates the response of RC soft-story frames retrofitted with hysteretic dampers subjected to near-fault ground motions in terms of maximum displacements and lateral seismic forces and compares them with those obtained by far-field earthquakes. It is found that for similar levels of total seismic input energy, the maximum displacements in the first story caused by near-fault earthquakes are about 1.3 times larger than those under far-field earthquakes, while the maximum inter-story drift in the upper stories and the distribution and values of the lateral forces are scarcely affected. It is concluded that the maximum displacements can be easily predicted from the energy balance of the structure by using appropriate values for the parameter that reflects the influence of the impulsivity of the ground motion: the so-called equivalent number of cycles.


1973 ◽  
Vol 63 (3) ◽  
pp. 1025-1039
Author(s):  
Bruce M. Douglas ◽  
Thomas E. Trabert

abstract The coupled bending and torsional vibrations of a relatively symmetric 22-story reinforced concrete building in Reno, Nevada are studied. Analytical results are compared with observations obtained during the nuclear explosion FAULTLESS and to ambient vibration data. The fundamental periods of vibration observed during FAULTLESS were (TNS = 1.42, TEW = 1.81, TTORSION = 1.12 sec), and the calculated periods were (TNS = 2.14, TEW = 2.07, TTORSION = 1.90 sec). It was estimated that between 25 and 45 per cent of the total available nonstructural stiffness was required to explain the differences in the observed and calculated fundamental periods. Each floor diaphragm in the system was allowed three degrees of freedom-two translations and a rotation. It was found that coupled torsional motions can influence the response of structural elements near the periphery of the structure. Strong-motion structural response calculations comparing the simultaneous use of both components of horizontal ground motion to a single component analysis showed that the simultaneous application of both components of ground motion can significantly alter the response of lateral load-carrying elements. Differences of the order of 45 per cent were observed in the frames near the ends of the structure. Also, it was shown that the overall response of tall buildings is sensitive not only to the choice of input ground motion but also to the orientation of the structure with respect to the seismic waves.


Author(s):  
C. S. Tsai ◽  
Tsu-Cheng Chiang ◽  
Bo-Jen Chen

In recent years, there have been more and more seismic retrofit applications of using base isolators in seismic prone regions. In the past, the focuses of researches on the efficiency of various base isolators have been aimed at their behavior under earthquakes without long predominant periods. The doubts of efficiency of the base isolator nearby active faults or located at a soft deposit soil have been raised by researchers. It is revealed from previous studies that the seismic responses of the base isolated structure are significant due to the influence of resonance. In order to minimize the inherent shortcomings of base isolators, various base isolators with dog bone type of friction behavior have been proposed in this study. In the meanwhile, the exact solutions used to describe the behavior of the proposed isolators have also been derived in this study. The numerical studies show that the displacement responses of proposed isolators under near fault earthquakes and ground motions with long predominant periods are much lower than those of the traditional FPS and VCFPS devices. Hence, the required dimensions of proposed isolators can be smaller than those for the FPS and VCFPS isolators.


2020 ◽  
Vol 36 (3) ◽  
pp. 1485-1516
Author(s):  
Jui-Liang Lin ◽  
Wen-Hui Chen ◽  
Fu-Pei Hsiao ◽  
Yuan-Tao Weng ◽  
Wen-Cheng Shen ◽  
...  

A shaking table test of a three-story reinforced concrete (RC) building was conducted. The tested building is vertically irregular because of the first story’s elevated height and the third story’s added RC walls. In addition to far-field ground motions, near-fault ground motions were exerted on this building. A numerical model of the three-story building was constructed. Comparing with the test results indicates that the numerical model is satisfactory for simulating the seismic response of the three-story building. This validated numerical model was then further applied to look into two issues: the effective section rigidities of RC members and the effects of near-fault ground motions. The study results show the magnitude of the possible discrepancy between the actual seismic response and the estimated seismic response, when the effective section rigidities of the RC members are treated as in common practice. An incremental dynamic analysis of the three-story RC building subjected to one far-field and one near-fault ground motion, denoted as CHY047 and TCU052, respectively, was conducted. In comparison with the far-field ground motion, the near-fault ground motion is more destructive to this building. In addition, the effect of the selected near-fault ground motion (i.e. TCU052) on the building’s collapse is clearly identified.


2012 ◽  
Vol 204-208 ◽  
pp. 2405-2409
Author(s):  
Heng Li ◽  
Chao Lian ◽  
Yu Yang Kong

The characteristics of near-fault ground motion displacements, with the obvious directivity, were analyzed. Along moving direction of the fault, displacements take on the feature of fling-step, and the large pulse is the main characteristic of displacements in the vertical moving direction of the fault. The models of near-fault ground motion with different detailed scales can be obtained by median filtering with different window length on the velocity series. Displacement spectra of the models were compared with observations from tremendous earthquakes. The results show that the highly simplified model can predict the response spectrum in very long periods, but there are distinct errors in the period range in which engineering is interested (Tp 5 sec). The refined model is necessary for very large magnitude earthquakes which include multiple rupture, and should be established according to characteristics of velocity.


2013 ◽  
Vol 438-439 ◽  
pp. 1471-1473
Author(s):  
Gong Lian Chen ◽  
Wen Zheng Lu ◽  
Lei Wang ◽  
Qi Wu

In order to study the far-field ground motion characteristics and the attenuation of seismic waves, the peak ground acceleration (velocity, displacement), time of duration and response spectrum of the seismic waves were analyzed in this paper. Through the investigation of earthquake wave propagation process, the seismic attenuation low was analyzed. This study can provide technical support for the seismic design of long period structures and related engineering application.


2017 ◽  
Vol 3 (5) ◽  
pp. 351-364
Author(s):  
Mohammad Shahmohammadi Mehrjerdi ◽  
Ahmad Ali Fallah ◽  
S.T. Tabatabaei Aghda

This paper studies Near and Far Field effects of the response of a column-pile to earthquakes considering Dynamic-Soil-Structure-Interaction (DSSI) effects in soft clay (Vs<180 m/s ) and stiff clay (180<Vs<375 m/s). Opensees software that can simulate the dynamic time history analysis is used. Both kinematic and inertial interactions are considered and Finite Element Method (FEM) is used to solve DSSI. The direct method applies to 3D modeling of the layered soil and column-pile. A Pressure Independ Multi Yield Surface Plasticity Model is used to simulate different kinds of clay behavior.  Time history seismic analyses provide for the mass and stiffness matrices to evaluate dynamic structural response with and without directivity effects for Near and Far Field earthquakes. Results show that the Multi-Yield-Surface-Kinematic-Plasticity-Model can be used instead of bilinear springs between piles and clay soil, for both Near Field and Far Field earthquakes. In addition, comparing Near and Far Field analyses, acceleration response spectrum at the top of the structure in the Far Field increases with the softness of the soil more than that in the Near field.


Author(s):  
Gareth J. Morris ◽  
Andrew J. Thompson ◽  
James N. Dismuke ◽  
Brendon A. Bradley

Nonlinear response history analysis (NLRHA), or so-called “nonlinear time history analysis”, is adopted by practicing structural engineers who implement performance-based seismic design and/or assessment procedures. One important aspect in obtaining reliable output from the NLRHA procedure is the input ground motion records. The underlying intention of ground motion selection and amplitude-scaling procedures is to ensure the input for NLRHA is representative of the ground shaking hazard level, for a given site and structure. The purpose of this paper is to highlight the salient limitations of the ground motion selection and scaling requirements in Sections 5.5 and 6.4 of the New Zealand (NZ) loading standard NZS 1170.5 (2004). From a NZ regulatory perspective; there is no specific framework for seismic hazard analysis and ground motion selection (thus self-regulation is the current norm). In contrast, NZS 1170.5 contains many prescriptive requirements for scaling and applying records which are challenging to satisfy in practice. Also discussed within, there are implications for more modern guidance documents in NZ, such as the 2017 “Assessment Guidelines” for existing buildings, which cite NZS 1170.5, a standard which is at least 16 years old (draft issued in 2002). To emphasize the above issues with NZS 1170.5, this paper presents a summary of the more contemporary approaches in the US standards ASCE 7-16 (new buildings) and ASCE 41-17 (existing buildings), along with some examples of the more stringent US requirements for Tall Buildings.


Sign in / Sign up

Export Citation Format

Share Document