scholarly journals Water Penetration of Concrete made with Coarse Aggregates from Demolishing Waste

2020 ◽  
Vol 10 (6) ◽  
pp. 6445-6449
Author(s):  
M. F. Koondhar ◽  
B. A. Memon ◽  
M. Oad ◽  
F. A. Chandio ◽  
S. A. Chandio

The results of laboratory investigations on water penetration in concrete made with coarse aggregates from demolishing waste are presented in this paper. Seven batches of standard size concrete cubes were cast with recycled aggregates from demolished concrete replacing coarse aggregates in percentages from 0% to 60%. The compressive strength of the samples was evaluated by non-destructive testing with the use of the Schimidz hammer. It was found that the strength reduces with an increase in recycled aggregate percentage. The maximum loss of strength due to the induction of recycled aggregates was 32% in the batch with 60%recycled aggregates. All samples were subject to constant water pressure of 5 bars for 72 hours. From the obtained results it was shown that the water penetration depth increases with increase in recycled aggregates rate. With 10% and 20% replacement the samples allowed less water to penetrate than conventional concrete samples, but 76% more penetration depth was recorded in samples with 60% replacement. Strength and water penetration results from dosages up to 20% show that the durability of the produced concrete allows it to be used in structural members with consideration of strength reduction in the design process. However, more water penetration with higher dosages of recycled aggregates needs proper care in design and usage of the concrete particularly for locations where concrete is exposed to water pressure.

2021 ◽  
Vol 11 (5) ◽  
pp. 7641-7646
Author(s):  
S. A. Dahri ◽  
B. A. Memon ◽  
M. Oad ◽  
R. Bhanbhro ◽  
I. A. Rahu

This research paper presents the laboratory investigations of the compressive strength of no-fines concrete made with demolished waste as coarse aggregates used in percentages from 20% to 100%. The basic properties of aggregates were determined. Sieve analysis of both conventional and recycled aggregates was conducted to ensure the existence of well-graded aggregates in concrete. Nine concrete mixes were designed with an aggregate-cement ratio of 4. Additionally, three batches were prepared (conventional, recycled, conventional no-fines concrete) and the results were compared. For all mixes, the water-cement ratio was equal to 0.5. In each batch, 5 cylinders of standard size (total 60 samples) were prepared and cured for 28 days. The weight of the specimens was determined and compressive strength was checked in a Universal Testing Machine under gradually increasing load. A decrease in weight and compressive strength was recorded for the batches of the proposed concrete. Results show that at 40% replacement level the loss of compressive strength is 19% and the weight reduction of the samples was equal to 9%.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2020 ◽  
Vol 10 (3) ◽  
pp. 5728-5731 ◽  
Author(s):  
S. A. Chandio ◽  
B. A. Memon ◽  
M. Oad ◽  
F. A. Chandio ◽  
M. U. Memon

This research paper aims at investigating the effects of fly ash as cement replacement in green concrete made with partial replacement of conventional coarse aggregates with coarse aggregates from demolishing waste. Green concrete developed with waste materials is an active area of research as it helps in reducing the waste management issues and protecting the environment. Six concrete mixes were prepared using 1:2:4 ratio and demolishing waste was used in equal proportion with conventional aggregates, whereas fly ash was used from 0%-10% with an increment of 2.5%. The water-cement ratio used was equal to 0.5. Out of these mixes, one mix was prepared with all conventional aggregates and was used as the control, and one mix with 0% fly ash had only conventional and recycled aggregates. The slump test of all mixes was determined. A total of 18 cylinders of standard size were prepared and cured for 28 days. After curing the compressive strength of the specimens was evaluated under gradually increasing load until failure. It is observed that 5% replacement of cement with fly ash and 50% recycled aggregates gives better results. With this level of dosage of two waste materials, the reduction in compressive strength is about 11%.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1247 ◽  
Author(s):  
Jianhe Xie ◽  
Jianbai Zhao ◽  
Junjie Wang ◽  
Chonghao Wang ◽  
Peiyan Huang ◽  
...  

There is a constant drive for the development of ultra-high-performance concrete using modern green engineering technologies. These concretes have to exhibit enhanced durability and incorporate energy-saving and environment-friendly functions. The object of this work was to develop a green concrete with an improved sulfate resistance. In this new type of concrete, recycled aggregates from construction and demolition (C&D) waste were used as coarse aggregates, and granulated blast furnace slag (GGBS) and fly ash-based geopolymer were used to totally replace the cement in concrete. This study focused on the sulfate resistance of this geopolymer recycled aggregate concrete (GRAC). A series of measurements including compression, X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were conducted to investigate the physical properties and hydration mechanisms of the GRAC after different exposure cycles in a sulfate environment. The results indicate that the GRAC with a higher content of GGBS had a lower mass loss and a higher residual compressive strength after the sulfate exposure. The proposed GRACs, showing an excellent sulfate resistance, can be used in construction projects in sulfate environments and hence can reduce the need for cement as well as the disposal of C&D wastes.


Author(s):  
Moein Khoshroo ◽  
Ali Akbar Shirzadi Javid ◽  
Nima Rajabi Bakhshandeh ◽  
Mohamad Shalchiyan

In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.


Author(s):  
Suhail Mushtaq Khan

Recycled aggregates are those crushed cement concrete or asphalt pavement which comes out from the construction debris which is reused in construction. They are made from the reprocessing of materials which have been used in previous constructions. This paper discusses about the study of properties of recycled aggregates from the sources which has already been published. The results are that 100% replacement of natural aggregate by recycled concrete aggregate effect on chloride ions resistance, it plays negative effects on durability of recycled concrete aggregates, and addition of fiber in recycled aggregate concrete mixture gave more effective in the performance of concrete. On experimental study of recycled aggregate, compressive, flexural and split tensile strength of the recycled aggregate were found to be lower than that of the natural aggregate. Use of recycled aggregate in a new concrete production is still limited. Recommendation of introduction of recycled aggregates standard is required for the materials to be used successfully in future. Gaps in literature reviews are also included in this paper.


Construction is the one the fast growing field in the worldwide. There are many environmental issues connected with the manufacture of OPC, at the same time availability of natural coarse aggregate is getting reduced. Geopolymer binder and recycled aggregates are promising alternatives for OPC and natural coarse aggregates. It is produced by the chemical action of inorganic molecules and made up of Fly Ash, GGBS, fine aggregate, coarse aggregate and an alkaline solution of sodium hydroxide and sodium silicate. 10 M sodium hydroxide and sodium silicate alkali activators are used to synthesis the geopolymer in this study. Recycled aggregates are obtained from the construction demolished waste. The main focus of this work is to find out the mechanical properties of geopolymer concrete of grade G40 when natural coarse aggregate(NCA) is replaced by recycled coarse aggregate in various proportions such as 0%, 10%, 20%, 30%,40% and 50% and also to compare the results of geopolymer concrete made with recycled coarse aggregates(RAGPC) with geopolymer concrete of natural coarse aggregate(GPC) and controlled concrete manufactured with recycled aggregates(RAC) and controlled concrete of natural coarse aggregates(CC) of respective grade. It has been observed that the mechanical properties are enhanced in geopolymer concrete, both in natural coarse aggregate and recycled coarse aggregate up to 30% replacement when it is compared with the same grade of controlled concrete.


2020 ◽  
Vol 184 ◽  
pp. 01095
Author(s):  
T Srinivas. ◽  
G Abhignya. ◽  
N.V Ramana Rao.

In present day scenario, concrete construction is rapidly increasing for different uses and aspects irrespective of the economy and its usage. Due to this imbalanced usage of economy, scarcity of raw materials increasing day by day and environment is getting affected due to manufacturing of cement. This study has been done how to reduce environmental pollution by using different kind of bi product materials in replacement to conventional concrete, which is made up of OPC. The cement can be replaced with fly ash; GGBS, rice husk ash etc, aggregates are being partially replaced with recycled aggregates which come from demolished structures and alkaline liquids such as sodium silicates and sodium hydroxide can be used in concrete, which is called geopolymer concrete. Literature review has been carried out to find the optimum content of aggregates to be replaced and the flexure behavior of the beams is being evaluated. From the literature study, it has been identified that the optimum compressive strength is achieved at 30% replacement of recycled aggregate and ductility natures of both Geopolymer and conventional concrete beams are almost similar.


2019 ◽  
Vol 5 (5) ◽  
pp. 1181-1188
Author(s):  
Bashir Ahmed Memon ◽  
Mahboob Oad ◽  
Abdul Hafeez Buller ◽  
Sajjad Ahmed Shar ◽  
Abdul Salam Buller ◽  
...  

This paper is aimed to evaluate the effect of mould size on compressive strength of concrete cubes made with recyclable concrete aggregates. Natural coarse aggregates were replaced with 50% recycled aggregates from old demolished concrete. Five different mould sizes were used to cast 420 concrete cubes using 1:2:4 mix and 0.55 water/cement ratio. In each size equal number of cubes was cured for 3, 7, 14 and 28-day. After curing, weight of cubes was determined followed by testing for compressive strength in universal load testing machine with gradually increasing load. From the obtained results the strength correction coefficients were computed keeping 28-day cured standard size cubes as control specimens. Also, numerical expression based on regression analysis was developed to predict the compressive strength using weight of cube, area of mould and curing age as input parameter. The numerical equation predicts the compressive strength very well with maximum of 10.86% error with respect to experimental results. 


Sign in / Sign up

Export Citation Format

Share Document