scholarly journals Special Moment Resistant Steel Buildings

Author(s):  
Deepan Dev B ◽  
Dr V Selvan

The seismic response of special moment-resisting frames (SMRF), buckling restrained braced (BRB) frames and self-centering energy dissipating (SCED) braced frames is compared when used in building structures many stories in height. The study involves pushover analysis as well as 2D and 3D nonlinear time history analysis for two ground motion hazard levels. The SCED and BRB braced frames generally experienced similar peak interstory drifts. The SMRF system had larger interstory drifts than both braced frames, especially for the shortest structures. The SCED system exhibited a more uniform distribution of the drift demand along the building height and was less prone to the biasing of the response in one direction due to P-Delta effects. The SCED frames also had significantly smaller residual lateral deformations. The two braced frame systems experienced similar interstory drift demand when used in torsional irregular structures.

2013 ◽  
Vol 671-674 ◽  
pp. 782-785
Author(s):  
Bin He ◽  
Jin Lai Pang ◽  
Cheng Qing Liu

For the lack of research in the longitudinal frame of prefabricated structure for its weak lateral stiffness, pushover analysis is conducted to evaluate the seismic performance of a fabricated concrete frame. Based on case study, the strengthening strategies with viscous dampers are analyzed. In view of the undesirable drift distribution and failure mode in the existing building, it is believed that arrangement of dampers should be designed to attain a uniform drift distribution. Based on the nonlinear time history analysis method, the strategy of damper allocation in vertical direction of the structure is investigated .Results indicate that a proper design might be attained based on the property of existing system, leading to a uniform drift distribution and better seismic performance.


2014 ◽  
Vol 30 (4) ◽  
pp. 1683-1709 ◽  
Author(s):  
Edgar Tapia-Hernández ◽  
Arturo Tena-Colunga

In order to help improve the seismic design of regular steel buildings structured with ductile moment-resisting concentrically braced frames (MRCBFs) using the general design methodology of Mexico's Federal District Code (MFDC-04), suitable design parameters were first assessed using the results of pushover analyses of 13 regular MRCBFs. In order to insure collapse mechanisms consistent with the assumptions implicit in a code-based design (strong-column/weak-beam/weaker-brace), it is proposed to relate the minimum strength ratio for the resisting columns of the moment frames and the bracing system. Improved equations are proposed for a more realistic assessment of ductility and overstrength factors. In a second stage, the effectiveness of the improved methodology was assessed with the design of six regular steel buildings with MRCBFs. Buildings were evaluated by performing both pushover and nonlinear time-history analyses under ten selected artificial ground motions related to the corresponding design spectrum.


2021 ◽  
Vol 6 (2) ◽  
pp. 98
Author(s):  
Ilham Ilham

ABSTRAKPenggunaan bresing tahan tekuk dapat menjadi solusi atas kebutuhan struktur tahan gempa di Indonesia. Disipasi energi pada elemen bresing tahan tekuk dilakukan melalui kinerja plastifikasi bagian inti bresing akibat beban tarik dan tekan. Penelitian ini berisi kajian kinerja dari bangunan rangka baja beraturan dengan bresing tahan tekuk (BRB) dengan variasi level ketinggian lantai yaitu 3 lantai, 8 lantai dan 15 lantai. Analisis struktur 3D dilakukan dengan dua prosedur analisis yaitu modal pushover dan nonlinear time history pada program ETABS. Hasil analisis menunjukkan bahwa pemilihan elemen BRB sangat mempengaruhi kinerja struktur, yang terlihat dari pola drift yang terjadi. Untuk struktur beraturan dengan berbagai ketinggian, tingkat kinerja struktur dengan BRB cukup baik, yaitu Immediate Occupancy (IO) akibat beban gempa rencana. Plastifikasi hanya terjadi pada BRB, dan kelelehan pada balok mulai terbentuk sampai mekanisme keruntuhan terjadi. Hasil modal pushover dengan nonlinear time history pada bangunan 15 lantai yang cukup mirip menunjukkan bahwa modal pushover dapat digunakan untuk memprediksi kinerja struktur BRB yang beraturan.Kata kunci: kinerja struktur, bresing tahan tekuk, immediate occupancy, modal pushover, nonlinear time history ABSTRACTBuckling restrained braces (BRB) can be an alternative solution for earthquake resistant steel structure in Indonesia. The energy dissipation for buckling restrained elements is conducted through yielding of the core due to tension or compression forces. This study presents an evaluation of the structural performance of steel structures with BRB varying in heights, 3-story, 8-story and 15-story. The 3D structural analysis was carried out with ETABS software using 2 methods, Modal Pushover and Nonlinear Time History. The results shows that the selection of BRB elements greatly affected the structural performance, showed by the drift pattern. For regular structures with variation in heights, structures with BRB behaved satisfactory under the design load with the performance level of Immediate Occupancy (IO). Yielding was limited to BRB members, and afterwards the yielding occurred on beams until collapse. The results of modal pushover and time history analysis for 15-story structure are similar, thus modal pushover can be used to predict the performance of regular structural system with BRB.Keywords: structural performance, buckling restrained brace, immediate occupancy, modal pushover analysis, nonlinear time history analysis


Author(s):  
Kanthi Srirengan ◽  
Partha Chakrabarti ◽  
Rupak Ghosh

Two novel methods namely the Dominant Modes method and the All Modes method to predict the seismic-pushover load for the jacket-type structures are presented. Both of these methods are based on the linear superposition of the modal reactions. As a preliminary evaluation, the linear elastic response of a jacket structure subjected to seismic-pushover loads is compared with that obtained from the response spectrum analysis. Furthermore, the nonlinear inelastic behavior obtained from the seismic-pushover analysis is compared with that obtained from the nonlinear time-history analysis, for a portal frame subjected to El Centro earthquake motion. When more than one mode is dominant in an excitation direction, both the linear elastic and the nonlinear inelastic responses obtained using the loads generated from the All Modes method are representative of the reference solutions.


2013 ◽  
Vol 40 (7) ◽  
pp. 644-654 ◽  
Author(s):  
Nikolas Kyriakopoulos ◽  
Constantin Christopoulos

The seismic performance of a typical 1960s Type 2 construction steel moment-resisting frame hospital structure designed only for lateral wind loads was investigated. The structure was found to have a soft first storey and displayed large P–Δ sensitivities. An experimental program determined that the connections had considerable inherent ductility and were stable up to 2.0% interstorey drift, despite not having been designed for a ductile cyclic response. The structure was numerically modelled using advanced strength degradation considerations. A nonlinear time-history analysis was conducted using Montreal and Vancouver ground motions and the structure’s performance was found to be inadequate under the considered design hazard levels. Retrofits were proposed for the two orthogonal frames using a performance-based approach and supplemental damping, rather than local interventions to increase the ductility of these connections, and the performance of the final retrofit designs were investigated numerically to confirm that the desired performance levels were achieved.


2014 ◽  
Vol 30 (4) ◽  
pp. 1601-1618 ◽  
Author(s):  
Arash Sahraei ◽  
Farhad Behnamfar

Relative displacement is a parameter that has a very high correlation with damage. The objective of this article is to develop an analysis procedure founded on the displacement-based seismic design methodology. Generalized interstory drift spectrum is applied as an essential tool in this new method called drift pushover analysis. In order to evaluate the behavior of structures, three demand parameters—lateral displacement, story shear, and plastic hinge rotation—are computed with conventional pushover analysis (CPA), modal pushover analysis (MPA), and drift pushover analysis (DPA), and are compared with those of the nonlinear time history analysis (NTA). It is observed that the new method, DPA, predicts the peak response measures more precisely and with less effort than the other nonlinear pushover procedures investigated in this study.


Sign in / Sign up

Export Citation Format

Share Document