scholarly journals Experimental Investigation on the effect of Chemical Pretreatments of Slow-Pyrolyzed Nigerian Jatropha curcas L. Biomass Residues on Pyrolytic oil

Author(s):  
Fatai Abiola Lateef ◽  
Helen Olayinka Ogunsuyi

In Nigeria, assemblage and discarding of residues from energy crops are increasingly becoming laborious and costly and may pose serious environmental challenges if not correctly managed. The Energy Commission of Nigeria’s long term (2016-2030) plan on the nation’s energy requirements is entirely non-fossil. This is attributable to the global decline of fossil fuel sources, soaring prices, climate crisis and the need to utilize hitherto abundant biomass resources for energy and chemical feedstocks purposes in Nigeria. In this research, an experimental study on the bio-oil generated through slow pyrolysis of Jatropha curcas L. biomass residues – Jatropha curcas L. seed shell (JSS) and Jatropha curcas L. fruit hull (JFH) were realized in a fixed bed reactor at 450 ℃ in a batch-wise step, biomass sample (1.14 mm) particle size, designed by authors. The biomass samples were subjected to pretreatment with 4% sulphuric and sodium hydroxide solutions each respectively. The Chemical compositions and functional groups available in the bio-oil of both raw and pretreated biomasses obtained at 450 ℃ were investigated by Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform- Infrared (FT-IR) spectroscopy analysis respectively. Scanning Electron Microscopy (SEM) was used to look into the residual biomass surface morphology of pretreated and untreated Jatropha curcas L. waste of JSS and JFH. The results acquired disclosed that the bio-oil obtained from JSS and JFH might be a principal liquid fuel starting point and chemical feedstocks.

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1609 ◽  
Author(s):  
Yong Cui ◽  
Wenliang Wang ◽  
Jianmin Chang

This study investigated and compared the product characteristics of pyrolysis lignin under different catalytic effects resulting from various calcium salts. The pyrolysis of lignin was conducted in a fixed-bed reactor with calcium salt additives, which included CaCl2, Ca(OH)2, and Ca(HCOO)2. The compositions of gas and bio-oil were detected using gas chromatography/mass spectrometry (GC/MS). The characterizations of chars were examined using Brunauer–Emmett–Teller (BET) surface area and scanning electron microscopy (SEM). The results indicate that all three types of calcium salts helped to promote bio-oil yield and inhibit gas and char from forming. Regarding the composition of gas products, calcium salt additives increased the concentrations of H2 and CH4 while decreasing the concentration of CO. In addition, calcium salt additives facilitated the formation of phenol and alkyl-phenols in bio-oil, but reduced the yields of guaiacol and vanillin, in the order CaCl2 < Ca(OH)2 < Ca(HCOO)2. Furthermore, when compared with the addition of CaCl2, the chars prepared by the addition of Ca(OH)2 and Ca(HCOO)2 had relatively higher BET surface areas. In conclusion, Ca(HCOO)2 had the greatest positive influence in regard to the product quality of lignin pyrolysis whilst also elevating the yield of value-added chemicals in bio-oils.


2021 ◽  
Vol 39 ◽  
pp. 75-84
Author(s):  
Ahmed Gaber H. Saif ◽  
Seddik S. Wahid ◽  
Mohamed R.O. Ali

Sugarcane bagasse pyrolysis in a fixed-bed reactor has been studied. The Pyrolytic oil and char obtained were characterized to determine their feasibility as fuels and chemical reagent in other processes. The runs were performed under the following conditions: temperature from 350°C–600°C, sample size of 0.5–1 mm, and an inert gas flow rate of 200 cm3/min. The study aimed to characterize the obtained oil and char to determine their feasibility as source of energy and chemical product. The product has been characterized by different techniques including gas chromatography–mass spectrometry (GC–MS), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The obtained bio-oil exhibited a molecular formula of CH1.03O0.28 N0.012 and a higher heating value (HHV) of 27.68 MJ/kg. These results indicated that it could be used after refining as a source of fuel and produced a chemical product. In addition, the obtained biochar (HHV = 31.53 MJ/kg) can be used as a solid fuel.


2019 ◽  
Vol 37 (9) ◽  
pp. 925-933 ◽  
Author(s):  
Derya Yeşim Hopa ◽  
Oğuzhan Alagöz ◽  
Nazan Yılmaz ◽  
Meltem Dilek ◽  
Gamze Arabacı ◽  
...  

In the present study, pyrolysis and co-pyrolysis of sugarcane bagasse, poppy capsule pulp, and rice husk were conducted in a fixed bed reactor at 550⁰C in nitrogen atmosphere. The moisture (5%–8%), ash (4%–17%), volatile matter (60%–76%), and fixed carbon analyses (11%–24%) of the utilized biomass were conducted. The decomposition behavior of biomasses due to the heat effect was investigated by thermogravimetric analysis/differential thermal analysis . In the pyrolysis of biomasses separately, the highest bio-oil yield was obtained with sugarcane bagasse (27.4%). In the co-pyrolysis of the binary blends of biomass, the highest bio-oil yield was obtained with the rice husk and sugarcane bagasse blends. While the mean bio-oil yield obtained with the separate pyrolysis of these two biomasses was 23.9%, it was observed that the bio-oil yield obtained with the co-pyrolysis of biomass blends was 28.4%. This suggested a synergistic interaction between the two biomasses during pyrolysis. It was observed that as the total ash content in the biomasses used in the pyrolysis increased, the bio-oil yield decreased, and the solid product content increased. Characterization studies of bio-oils were conducted by Fourier-transform infrared spectroscopy, gas chromatography–mass spectrometry (GC-MS), and hydrogen-1 nuclear magnetic resonance analyses. Results of these studies revealed that, all bio-oils were mainly composed of aliphatic and oxygenated compounds. The calorific values of bio-oils were determined by calorimeter bomb. Based on the GC-MS, the bio-oils with high fatty acid and its ester content also had high calorific values. The highest calorific value was 29.68 MJ kg-1, and this was obtained by pyrolysis of poppy capsule and sugarcane bagasse blend.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


2014 ◽  
Vol 625 ◽  
pp. 626-629 ◽  
Author(s):  
Mandy Su Zan Gui ◽  
Seyed Amirmostafa Jourabchi ◽  
Hoon Kiat Ng ◽  
Suyin Gan

Slow pyrolysis (SP) and fast pyrolysis (FP) of rice husks, coconut shells and their mixtures were studied in a fixed bed reactor. The objectives of this study were to compare the yields and properties of bio-oils produced using SP and FP methods within a pyrolysis temperature range of 400 °C to 600 °C. Three different biomass compositions, 100% rice husks (RH), 100% coconut shells (CS) and a mixture of 50% rice husks with 50% of coconut shells (RH50/CS50) were experimented. In SP, the maximum yield of bio-oil for RH, CS and RH50/CS50 were 45.45%, 37.01%, 38.29% at temperatures of 550 °C, 500 °C and 600 °C respectively. As for FP, the maximum bio-oil yield obtained for RH, CS and RH50/CS50 were 50.52%, 40.14% and 42.25% at temperatures of 500 °C, 600 °C and 550 °C respectively. At these optimum pyrolysis temperatures, the percentage differences in bio oil yields for SP and FP were 10.57%, 8.11% and 9.83% for RH, CS and RH50/CS50 respectively. Based on American Society for Testing and Materials (ASTM) standard procedures, the properties of bio-oil were characterised and it was found that the bio oil produced by FP at optimum temperatures were less acidic, higher density, lower water content and viscosity as compared to the bio-oil produced by SP method for all biomass compositions.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2019 ◽  
Vol 19 (3) ◽  
pp. 703 ◽  
Author(s):  
Siti Jamilatun ◽  
Budhijanto Budhijanto ◽  
Rochmadi Rochmadi ◽  
Avido Yuliestyan ◽  
Arief Budiman

With a motto of preserving nature, the use of renewable resources for the fulfillment of human needs has been seen echoing these days. In response, microalgae, a water-living microorganism, is perceived as an interesting alternative due to its easy-to-cultivate nature. One of the microalgae, which possess the potential for being the future source of energy, food, and health, is Spirulina plantesis. Aiming to identify valuable chemicals possibly derived from it, catalytic and non-catalytic pyrolysis process of the residue of S. plantesis microalgae has been firstly carried out in a fixed-bed reactor over the various temperature of 300, 400, 500, 550 and 600 °C. The resulting vapor was condensed so that the liquid product consisting of the top product (oil phase) and the bottom product (water phase) can be separated. The composition of each product was then analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). In the oil phase yield, the increase of aliphatic and polyaromatic hydrocarbons (PAHs) and the decrease of the oxygenated have been observed along with the increase of pyrolysis temperature, which might be useful for fuel application. Interestingly, their water phase composition also presents some potential chemicals, able to be used as antioxidants, vitamins and food additives.


Sign in / Sign up

Export Citation Format

Share Document