scholarly journals Assessment of visual attentional state using event-related brain potentials: Can early deviant-related components be a measure for assessing the amount of attentional resources allocated to a task?

Author(s):  
Motohiro KIMURA ◽  
Yuji TAKEDA
2008 ◽  
Vol 20 (7) ◽  
pp. 1207-1219 ◽  
Author(s):  
Anna S. Hasting ◽  
Sonja A. Kotz

Neurolinguistic research utilizing event-related brain potentials (ERPs) typically relates syntactic phrase structure processing to an early automatic processing stage around 150 to 200 msec, whereas morphosyntactic processing is associated with a later and somewhat more attention-dependent processing stage between 300 and 500 msec. However, recent studies have challenged this position by reporting highly automatic ERP effects for morphosyntax in the 100 to 200 msec time range. The present study aimed at determining the factors that could contribute to such shifts in latency and automaticity. In two experiments varying the degree of attention, German phrase structure and morphosyntactic violations were compared in conditions in which the locality of the violated syntactic relation, as well as the violation point and the acoustic properties of the speech stimuli, were strictly controlled for. A negativity between 100 and 300 msec after the violation point occurred in response to both types of syntactic violations and independently of the allocation of attentional resources. These findings suggest that the timing and automaticity of ERP effects reflecting specific syntactic subprocesses are influenced to a larger degree by methodological than by linguistic factors, and thus, need to be regarded as relative rather than fixed to temporally successive processing stages.


Cortex ◽  
2019 ◽  
Vol 120 ◽  
pp. 147-158 ◽  
Author(s):  
Holger Wiese ◽  
Brandon T. Ingram ◽  
Megan L. Elley ◽  
Simone C. Tüttenberg ◽  
A. Mike Burton ◽  
...  

2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


2002 ◽  
Vol 16 (3) ◽  
pp. 129-149 ◽  
Author(s):  
Boris Kotchoubey

Abstract Most cognitive psychophysiological studies assume (1) that there is a chain of (partially overlapping) cognitive processes (processing stages, mechanisms, operators) leading from stimulus to response, and (2) that components of event-related brain potentials (ERPs) may be regarded as manifestations of these processing stages. What is usually discussed is which particular processing mechanisms are related to some particular component, but not whether such a relationship exists at all. Alternatively, from the point of view of noncognitive (e. g., “naturalistic”) theories of perception ERP components might be conceived of as correlates of extraction of the information from the experimental environment. In a series of experiments, the author attempted to separate these two accounts, i. e., internal variables like mental operations or cognitive parameters versus external variables like information content of stimulation. Whenever this separation could be performed, the latter factor proved to significantly affect ERP amplitudes, whereas the former did not. These data indicate that ERPs cannot be unequivocally linked to processing mechanisms postulated by cognitive models of perception. Therefore, they cannot be regarded as support for these models.


2021 ◽  
Vol 35 (1) ◽  
pp. 15-22
Author(s):  
Kohei Fuseda ◽  
Jun’ichi Katayama

Abstract. Interest is a positive emotion related to attention. The event-related brain potential (ERP) probe technique is a useful method to evaluate the level of interest in dynamic stimuli. However, even in the irrelevant probe technique, the probe is presented as a physical stimulus and steals the observer’s attentional resources, although no overt response is required. Therefore, the probe might become a problematic distractor, preventing deep immersion of participants. Heartbeat-evoked brain potential (HEP) is a brain activity, time-locked to a cardiac event. No probe is required to obtain HEP data. Thus, we aimed to investigate whether the HEP can be used to evaluate the level of interest. Twenty-four participants (12 males and 12 females) watched attractive and unattractive individuals of the opposite sex in interesting and uninteresting videos (7 min each), respectively. We performed two techniques each for both the interesting and the uninteresting videos: the ERP probe and the HEP techniques. In the former, somatosensory stimuli were presented as task-irrelevant probes while participants watched videos: frequent (80%) and infrequent (20%) stimuli were presented at each wrist in random order. In the latter, participants watched videos without the probe. The P2 amplitude in response to the somatosensory probe was smaller and the positive wave amplitudes of HEP were larger while watching the videos of attractive individuals than while watching the videos of unattractive ones. These results indicate that the HEP technique is a useful method to evaluate the level of interest without an external probe stimulus.


2016 ◽  
Vol 30 (3) ◽  
pp. 102-113 ◽  
Author(s):  
Chun-Hao Wang ◽  
Chun-Ming Shih ◽  
Chia-Liang Tsai

Abstract. This study aimed to assess whether brain potentials have significant influences on the relationship between aerobic fitness and cognition. Behavioral and electroencephalographic (EEG) data was collected from 48 young adults when performing a Posner task. Higher aerobic fitness is related to faster reaction times (RTs) along with greater P3 amplitude and shorter P3 latency in the valid trials, after controlling for age and body mass index. Moreover, RTs were selectively related to P3 amplitude rather than P3 latency. Specifically, the bootstrap-based mediation model indicates that P3 amplitude mediates the relationship between fitness level and attention performance. Possible explanations regarding the relationships among aerobic fitness, cognitive performance, and brain potentials are discussed.


Author(s):  
Luisa Lugli ◽  
Stefania D’Ascenzo ◽  
Roberto Nicoletti ◽  
Carlo Umiltà

Abstract. The Simon effect lies on the automatic generation of a stimulus spatial code, which, however, is not relevant for performing the task. Results typically show faster performance when stimulus and response locations correspond, rather than when they do not. Considering reaction time distributions, two types of Simon effect have been individuated, which are thought to depend on different mechanisms: visuomotor activation versus cognitive translation of spatial codes. The present study aimed to investigate whether the presence of a distractor, which affects the allocation of attentional resources and, thus, the time needed to generate the spatial code, changes the nature of the Simon effect. In four experiments, we manipulated the presence and the characteristics of the distractor. Findings extend previous evidence regarding the distinction between visuomotor activation and cognitive translation of spatial stimulus codes in a Simon task. They are discussed with reference to the attentional model of the Simon effect.


2012 ◽  
Vol 43 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Silvia Tomelleri ◽  
Luigi Castelli

In the present paper, relying on event-related brain potentials (ERPs), we investigated the automatic nature of gender categorization focusing on different stages of the ongoing process. In particular, we explored the degree to which gender categorization occurs automatically by manipulating the semantic vs. nonsemantic processing goals requested by the task (Study 1) and the complexity of the task itself (Study 2). Results of Study 1 highlighted the automatic nature of categorization at an early (N170) and on a later processing stage (P300). Findings of Study 2 showed that at an early stage categorization was automatically driven by the ease of extraction of category-based knowledge from faces while, at a later stage, categorization was more influenced by situational constrains.


Sign in / Sign up

Export Citation Format

Share Document