scholarly journals An energy-efficient metro speed profiles for energy savings: application to the Valencia metro

Author(s):  
Ignacio Villalba Sanchis ◽  
Pablo Salvador Zuriaga

Nowadays one of the main priorities for metro line operators is the reduction of energy consumption, due to the environmental impact and economic cost. In order to achieve this objective different strategies can be applied, normally focused into rolling stock, infrastructure and/or operation. Considering short-term measures and related to the traffic operation strategies, different approaches are being researched. One of the most effective strategy which reduce net energy consumption is the use of efficient driving techniques. These techniques produces a speed profile between two stations that requires the minimum net energy consumption, without degrading commercial running times or passenger comfort. In this paper, a computer model for calculating the metro vehicles speed profiles minimizing the energy consumption was developed. The equations considered in the model represent the behavior of a single vehicle operated under manual driving, subject to different constraints such as the headway, cycle time, distances and acceleration limits. The proposed model calculates different commands to be systematically executed by the driver. The resulting simulator has been tuned by means of on board measurements of speed, accelerations and energy consumption obtained along different lines in Metro de Valencia network. For this purpose, different scenarios are analyzed to assess the achievable energy savings. In general terms and comparing with the actual energy consumption, the solutions proposed can reduce the net energy consumption around 19%.DOI: http://dx.doi.org/10.4995/CIT2016.2016.3774

2021 ◽  
Vol 2042 (1) ◽  
pp. 012144
Author(s):  
Flourentzos Flourentzou ◽  
Joshua Pereira

Abstract In a Swiss case study of the ReCO2st research project, hot water optimization demonstrated a high potential for energy savings with low investment costs. The optimization started with the end user to reduce first hot water consumption. Energy-efficient showerheads and faucets reduced hot water consumption by 10 to 25%, notably from 65.2 [l/p.day] to 48 [l/p.day] for the period of September to October 2019. A multi-criteria selection of showerheads involved end users considering other qualitative aspects like rinsing efficiency, overall feel of use, noise, and material robustness. Strict control of pipe and storing tank insulation reduced storage and distribution losses. Day and night storage temperature setpoints, water recirculation time, switching off this process after 11:00 p.m., temperature differential of start and stop loading setpoints, creating long loading cycles, ensure that the pipes are not always hot. Reducing Legionella cycles at 60° to once a day avoided the need for continuous high temperatures. The combination of all these soft measures in the Swiss case study resulted in a reduction of energy consumption for hot water of 20-30%. This is equivalent to the installation of expensive solar panels for hot water. A detailed two-year monitoring of the building's hot water consumption shows the contribution of each optimization measure. The encouraging results show that without perfect control of the entire process, it is impossible to avoid a performance gap between planned and actual energy consumption.


2014 ◽  
Vol 655 ◽  
pp. 15-20 ◽  
Author(s):  
Sven Kreitlein ◽  
Tobias Rackow ◽  
Jörg Franke

This paper introduces a method for the assessment and evaluation of energy efficiency of the manufacturing processes in the production as well as a corporate and cross-industry comparison. Already today, energy-related characteristic value systems are used, which are related to the energy consumption of large electronic household appliances or are focusing on their production facilities. The energy efficiency value is a newly developed indicator and will provide valuable information about the energy efficiency of the production of various products, production operators, and consumers. In the following, the energy efficiency value, which is based on the approach of minimal value calculation, is presented in detail. The basic idea is the comparison and evaluation of energy efficiency based on the ratio of the theoretically required energy consumption to the actual energy consumption. Depending on the analysis of influencing factors, a model highlighting their dependencies could be established. The developed system hinges on a successive calculation of the minimum value. Each of these minimum types can be put in relation to the measured energy consumption. However, depending on the chosen basis, the conclusion and focus of the calculated key figure may vary. By using the real minimum as a basis, the actually existing energy savings become visible. The method will be put to the test through an exemplary application for processes in the fields of cutting technologies. This course of action allows for the validation of the developed energy efficiency value and reveals the potential of this method.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4557
Author(s):  
Vitalii Naumov ◽  
Daniel Kubek ◽  
Paweł Więcek ◽  
Iwona Skalna ◽  
Jerzy Duda ◽  
...  

Energy costs account for a significant proportion of total costs in production systems. Since energy is becoming an increasingly expensive resource, therefore, it is critical to consume it as efficiently as possible. Focusing on energy efficiency is also important in terms of reducing greenhouse gas (GHG) emissions and the effects of other pollutants on the environment. One of the possible ways for businesses to reduce energy consumption is to use available transportation means as efficiently as possible. In the operational phase, this can be achieved by reducing unnecessary transport, selecting the most efficient delivery routes, and by optimized assignment of available vehicles to transportation orders. We present in this article a novel dynamic assignment of transportation orders to fleet with energy minimization criterion in internal transport system of a printing company. The novelty of the proposed model is that, in contrast to most existing models, it can handle a heterogeneous fleet of human-operated and autonomous mobile robots (AMRs). The minimization of the energy consumption by transportation vehicles was modeled with reference to VDI 2198 standard. The need for such a model is justified by the fact that it better reflects a real production environment in many companies. The proposed optimization model was tested in simulation experiments imitating real production conditions in a large web printing house. The obtained results show that the proposed model allows for a significant reduction of energy consumption in internal transportation. The proposed model is general enough to be used in various companies with a heterogeneous fleet of internal transportation vehicles. In addition, the energy consumption factor VDI for AMRs has been determined, which can be useful in solving various problems related to energy optimization of internal transportation.


Author(s):  
Edzel Jair Casados-López ◽  
Alvaro Casados-Sánchez ◽  
Raúl Cruz-Vicencio ◽  
Alvaro Horst-Sánche

A methodology is proposed for calculating the cooling load and the energy consumption of air conditioning equipment in three scale models of buildings under study, using the ASHRAE CLTD / SCL / CLF method. The building in which the mentioned method is used are three scale models of buildings located in the city of Poza Rica, state of Veracruz, Mexico. This method is applied in order to obtain the cooling load as exact as possible and thus avoid oversizing in air conditioning equipment, and by using thermal insulation, achieve a decrease in energy consumption and thus contribute to the reduction of CO2 emissions, to energy saving and therefore to sustainable development. The cooling load is calculated by applying the proposed methodology to three cases: model A, B and C. The results for the three test models, object of this study, are compared. Measurements of energy consumption are made to perform the error analysis of the actual energy consumption with respect to that calculated using the method. Finally, energy savings are quantified, in the cases mentioned.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Alfio Lombardo ◽  
Vincenzo Riccobene ◽  
Giovanni Schembra

Today the reduction of energy consumption in telecommunications networks is one of the main goals to be pursued by manufacturers and researchers. In this context, the paper focuses on routers that achieve energy saving by applying the frequency scaling approach. The target is to propose an analytical model to support designers in choosing the main configuration parameters of the Router Governor in order to meet Quality of Service (QoS) requirements while maximizing energy saving gain. More specifically, the model is used to evaluate the input traffic impacts on the choice of the active router clock frequencies and on the overall green router performance. A case study based on the open NetFPGA reference router is considered to show how the proposed model can be easily applied to a real case scenario.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3169 ◽  
Author(s):  
Natthanon Phannil ◽  
Chaiyan Jettanasen ◽  
Atthapol Ngaopitakkul

This paper proposes the study and analysis of harmonics, energy consumption and power quality of light emitting diode (LED) lamps equipped in building lighting systems. LED lamps with external (LED MR16) and internal (LED light bulb) drivers are investigated using an experimental setup to compare the results. The power quality of both LED lamps is studied by using a power quality meter to measure the generated harmonic currents from various case studies. The case study is divided into four major cases: one LED lamp is turned on with one driver, two LED lamps are turned on using the two drivers, eight LED lamps are turned on with one driver, and eight LED lamps are turned on with the eight drivers. As harmonics are related to total power factor (PF), which affects the energy savings of the building, hence, a filtering circuit to reduce harmonic current has been designed and implemented to improve power quality and/or power factor of the system. The different cases of harmonic filter insertion at the input of an LED lamp’s driver are discussed and then compared with a lighting standard to show the effectiveness of the passive filtering technique used in the studied system. In addition, the obtained result can be applied to both newly built and retrofitted buildings that aim to use LED technology to increase energy efficiency and decrease energy costs, and could be a helpful guide for end-users and manufacturers in addressing and developing LED issues.


1978 ◽  
Vol 22 (1) ◽  
pp. 537-537 ◽  
Author(s):  
Clive Seligman

A great deal of psychological research has suggested that giving immediate feedback to an individual on the effects of his actions enables him better to control his actions. The application of this idea to the reduction of energy consumption is clear. In general homeowners are motivated by cost and other pressures to reduce their home energy consumption. Therefore, if they are given daily feedback on their actual energy consumption, this ought to enable them to better control their consumption rates. Why should feedback have this effect? First, since most homeowners are unaware of the amount of energy they use (the monthly utility bill is not clear or detailed enough to be very helpful), feedback provides information about energy usage. Second, frequent feedback indicates the success of various attempted conservation strategies; it can lead the homeowner to discover and to maintain conservation habits.


2019 ◽  
Vol 111 ◽  
pp. 04025
Author(s):  
Paula van den Brom ◽  
Arjen Meijer ◽  
Henk Visscher

Thermal renovations are considered to be an effective measure to reduce residential energy consumption. However, they often result in lower-than-expected energy savings. In this paper, we investigate some parameters that influence the probability on lower-than-expected energy savings. We do this by comparing actual pre- and post-renovation energy consumption of 90,000 houses in the Netherlands. The results of this study confirm that the effect of the parameters differ per renovation measure. For every renovation measure, the energy performance gap post renovation plays a significant role. This implies that the use of actual energy consumption data to determine the potential energy savings could therefore help to reduce the number of renovations resulting in lower-than-expected energy savings. Also, the energy efficiency state of the building pre-renovation plays an important role. One should take into account that renovations of energy inefficient buildings more frequently result in lower-than-expected energy savings than renovations of relatively energy efficient buildings. For the type of house we found that multifamily houses more often result in lower than expected savings when building installations are improved, while single-family houses renovations more frequently result in lower energy savings than expected when the building envelope insulation is improved. These insights can contribute to the decision making process whether or not to take a certain renovation measures, they can also help to manage expectations on housing stock level and individual building level.


2018 ◽  
Vol 1 (1) ◽  
pp. 19-37
Author(s):  
Said Al Rabadi

The most important challenge in a natural gas liquefaction plant is to improve the plant energy efficiency. A process topology should be implemented, which results in a considerable reduction of energy consumption as the natural gas liquefaction process consumes a large amount of energy. In particular, system design focusing on configuring cold part cycle is an attractive option. In this study, various energy recovery-oriented process configurations and the potential improvements of energy savings for small- & midscale liquefied natural gas plants were proposed and compared with almost exclusively commercial trademarks processes. These improved simulation based investigations were validated under the variation in feed gas pressure, mixed refrigerant cooling reference temperature and the pinch temperature of cryogenic plate fin heat exchanger. The simulation results exhibited considerable reduction of specific total energy consumption. Therefore, the proposed liquefaction cycles have a simple topology, hence lower capital cost and compacter plant layout, which is compatible for power-efficient, offshore, floating liquefied natural gas liquefaction plants.


Sign in / Sign up

Export Citation Format

Share Document