scholarly journals Modelación de Crecidas Aluvionales en la Cuenca del Río Copiapó, Chile

2017 ◽  
Vol 21 (2) ◽  
pp. 135 ◽  
Author(s):  
Rodrigo Valdés-Pineda ◽  
Juan B. Valdés ◽  
Pablo García-Chevesich

<p class="Resumen">Los eventos extremos de precipitación intensa que se produjeron entre el 24 y 26 de marzo de 2015 en la región del Desierto de Atacama (26-29°S), en el Norte de Chile, dejaron alrededor de 30 000 damnificados, siendo uno de los eventos de mayores magnitudes de los últimos 50 años, y que tuvo un costo de reconstrucción de alrededor de $1.5 billones de dólares. Los flujos de detritos que se incrementaron durante la crecida inundaron gran parte de las ciudades de Copiapó y Tierra Amarilla. Este manuscrito tiene por objetivo modelar la crecida aluvional de marzo de 2015 en la cuenca del Río Copiapó, específicamente en las localidades de Copiapó y Tierra Amarilla. La modelación se lleva a cabo utilizando el modelo Rapid Mass Movement Simulation (RAMMS) que permite modelar la dinámica de la crecida aluvional en dos dimensiones, utilizando las características topográficas de los dominios de modelación. La calibración del modelo fue llevada a cabo satisfactoriamente utilizando datos de alturas capturados en terreno después de la crecida del año 2015. Un análisis detallado del evento hidrometeorológico es llevado a cabo utilizando imágenes satelitales obtenidas desde Multi-satellite Precipitation Analysis (TMPA), así como datos pluviométricos e hidrográficos disponibles en la cuenca del Río Copiapó. La simulación de la crecida es reproducida con mapas de alturas de inundación asociados a dos escenarios de modelación. Las alturas máximas de inundación son finalmente utilizadas para el desarrollo de mapas de riesgos en ambas localidades. De acuerdo a nuestros resultados, el modelo RAMMS es una herramienta apropiada para modelar crecidas aluvionales y elaborar mapas de riesgos de inundación para mejorar la gestión de riesgos hidrológicos en cuencas áridas y semiáridas de Chile.</p>

2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Yohandi Kristiawan

Aliran bahan rombakan (debris flow) adalah fenomena di mana percampuran air, lumpur, dan kerikil sampai bongkah mengalir dengan kecepatan tinggi. Karena aliran debris flow memiliki viskositas dan kecepatan yang tinggi, maka bersifat sangat merusak karena mengangkut material yang dilalui di sepanjang sungai sehingga volume dan energinya semakin meningkat dan dapat merusak rumah, jembatan, dan infrastruktur, dan mengakibatkan korban jiwa. Aliran bahan rombakan atau sering disebut banjir bandang merupakan jenis gerakan tanah yang sering terjadi di Kecamatan Sambelia, Kabupaten Lombok Timur, Nusa Tenggara Barat. Kejadian banjir bandang sering terjadi selama kurun 10 tahun terakhir yaitu pada tahun 2006, 2012, 2014, dan 2017. Dampak banjir bandang menyebabkan banyak korban jiwa dan beberapa jembatan utama roboh sehingga jalur transportasi terputus serta sebagian masyarakat terpaksa mengungsi. Topografi di daerah Sambelia yang berupa perbukitan terjal dengan hulu sungai yang sempit menjadikan beberapa daerah aliran sungai di wilayah ini rentan terjadi bendungan alam penyebab aliran bahan rombakan. Berdasarkan interpretasi citra menunjukan bahwa daerah sambelia merupakan kipas alluvial. Upaya mitigasi terhadap ancaman gerakan tanah salah satunya dilakukan dengan melakukan pemodelan. Rapid Mass Movement Simulation (RAMSS) merupakan salah satu program untuk mensimulasikan aliran debris. Pemodelan dilakukan dengan memasukkan parameter-parameter tertentu seperti volume, friksi, DEM, dll. Hasil pemodelan ini berupa zonasi daerah bahaya aliran debris/banjir bandang. Sehingga hasil pemodelan diharapkan dapat menjadi salah satu kajian atau rujukan dalam mitigasi bencana gerakan tanah di Kecamatan Sambelia, Nusa Tenggara Barat.Kata kunci : pemodelan, banjir bandang, aliran bahan rombakan, sambelia, ramms


2019 ◽  
Vol 22 (6) ◽  
pp. 5539-5552
Author(s):  
T. P. Singh ◽  
Vidya Kumbhar ◽  
Sandipan Das ◽  
Mangesh M. Deshpande ◽  
Komal Dhoka

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1803
Author(s):  
Xiaoli Chen ◽  
Guoru Huang

The assessment of various precipitation products’ performances in extreme climatic conditions has become a topic of interest. However, little attention has been paid to the hydrological substitutability of these products. The objective of this study is to explore the performance of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) product in the Feilaixia catchment, China. To assess its applicability in extreme consecutive climates, several statistical indices are adopted to evaluate the TMPA performance both qualitatively and quantitatively. The Cox–Stuart test is used to investigate extreme climate trends. The Soil and Water Assessment Tool (SWAT) model is used to test the TMPA hydrological substitutability via three scenarios of runoff simulation. The results demonstrate that the overall TMPA performance is acceptable, except at high-latitudes and locations where the terrain changes greatly. Moreover, the accuracy of the SWAT model is high both in the semi-substitution and full-substitution scenarios. Based on the results, the TMPA product is a useful substitute for the gauged precipitation in obtaining acceptable hydrologic process information in areas where gauged sites are sparse or non-existent. The TMPA product is satisfactory in predicting the runoff process. Overall, it must be used with caution, especially at high latitudes and altitudes.


2020 ◽  
Author(s):  
Alessandro De Pedrini ◽  
Christian Ambrosi ◽  
Cristian Scapozza

&lt;p&gt;The Monte Crenone rock avalanche of 30 September 1513 is one of the most catastrophic natural events in Switzerland and throughout the Alps. The enormous mass of rock that broke away from the western slope of Pizzo Magn or Monte Crenone, estimated at 50-90 million cubic metres, caused the complete damming of the course of the Brenno river, leading to the formation of a basin that extended from Biasca to the Castello di Serravalle in Semione (De Antoni et al. 2016). On 20 May 1515 the basin formed behind the dam overflowed, giving rise to a wave of more than 10 meters high that led to devastation in the territories downstream to reach Lake Maggiore (Scapozza et al. 2015).&lt;/p&gt;&lt;p&gt;In this project, we analyze the dynamics of the 1513 rock avalanche, trying to reconstruct the event through a numerical model, calculated with the software RAMMS::Debrisflow (RApid Mass Movement Simulation) provided by the Federal Institute for the Study of Snow and Avalanches (SLF/WSL).&lt;/p&gt;&lt;p&gt;The realization of the numerical model was preceded by the reconstruction of the topography before the landslide. This first phase of work, included a geological survey of the landslide body, the analysis of digital data (orthophotos, digital topographic maps, shaded model derived from swissALTI3D) and the collection of previous historical data.&lt;/p&gt;&lt;p&gt;The observation of the stratigraphic data obtained from the 701.27, 701.30 and 701.31 boreholes (part of the geotechnical studies for the Chiasso-San Gottardo highway) of the GESPOS database (GEstione Sondaggi, POzzi e Sorgenti) of the Institute of Earth Sciences SUPSI was essential to understand the landslide body thickness and volume in the deposition zone.&lt;/p&gt;&lt;p&gt;From the first phase of data collection and interpretation, we then moved on to the actual reconstruction of the digital model of the terrain before the landslide. This operation was carried out using ESRI's ArcGIS software, which made it possible recreating multiple models of the pre-event topography and thus finding the most realistic solution applicable to the subsequent RAMMS model.&lt;/p&gt;


2010 ◽  
Vol 11 (4) ◽  
pp. 966-978 ◽  
Author(s):  
Kenneth J. Tobin ◽  
Marvin E. Bennett

Abstract Significant concern has been expressed regarding the ability of satellite-based precipitation products such as the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 products (version 6) and the U.S. National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center’s (CPC) morphing technique (CMORPH) to accurately capture rainfall values over land. Problems exist in terms of bias, false-alarm rate (FAR), and probability of detection (POD), which vary greatly worldwide and over the conterminous United States (CONUS). This paper directly addresses these concerns by developing a methodology that adjusts existing TMPA products utilizing ground-based precipitation data. The approach is not a simple bias adjustment but a three-step process that transforms a satellite precipitation product. Ground-based precipitation is used to develop a filter eliminating FAR in the authors’ adjusted product. The probability distribution function (PDF) of the satellite-based product is adjusted to the PDF of the ground-based product, minimizing bias. Failure of precipitation detection (POD) is addressed by utilizing a ground-based product during these periods in their adjusted product. This methodology has been successfully applied in the hydrological modeling of the San Pedro basin in Arizona for a 3-yr time series, yielding excellent streamflow simulations at a daily time scale. The approach can be applied to any satellite precipitation product (i.e., TRMM 3B42 version 7) and will provide a useful approach to quantifying precipitation in regions with limited ground-based precipitation monitoring.


Sign in / Sign up

Export Citation Format

Share Document