The 1513 Monte Crenone Rock Avalanche. Numerical model and geomorphological analysis

Author(s):  
Alessandro De Pedrini ◽  
Christian Ambrosi ◽  
Cristian Scapozza

<p>The Monte Crenone rock avalanche of 30 September 1513 is one of the most catastrophic natural events in Switzerland and throughout the Alps. The enormous mass of rock that broke away from the western slope of Pizzo Magn or Monte Crenone, estimated at 50-90 million cubic metres, caused the complete damming of the course of the Brenno river, leading to the formation of a basin that extended from Biasca to the Castello di Serravalle in Semione (De Antoni et al. 2016). On 20 May 1515 the basin formed behind the dam overflowed, giving rise to a wave of more than 10 meters high that led to devastation in the territories downstream to reach Lake Maggiore (Scapozza et al. 2015).</p><p>In this project, we analyze the dynamics of the 1513 rock avalanche, trying to reconstruct the event through a numerical model, calculated with the software RAMMS::Debrisflow (RApid Mass Movement Simulation) provided by the Federal Institute for the Study of Snow and Avalanches (SLF/WSL).</p><p>The realization of the numerical model was preceded by the reconstruction of the topography before the landslide. This first phase of work, included a geological survey of the landslide body, the analysis of digital data (orthophotos, digital topographic maps, shaded model derived from swissALTI3D) and the collection of previous historical data.</p><p>The observation of the stratigraphic data obtained from the 701.27, 701.30 and 701.31 boreholes (part of the geotechnical studies for the Chiasso-San Gottardo highway) of the GESPOS database (GEstione Sondaggi, POzzi e Sorgenti) of the Institute of Earth Sciences SUPSI was essential to understand the landslide body thickness and volume in the deposition zone.</p><p>From the first phase of data collection and interpretation, we then moved on to the actual reconstruction of the digital model of the terrain before the landslide. This operation was carried out using ESRI's ArcGIS software, which made it possible recreating multiple models of the pre-event topography and thus finding the most realistic solution applicable to the subsequent RAMMS model.</p>

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Naseem Gilany ◽  
Javed Iqbal

AbstractGlacial avalanche hazards can threaten lives and damage infrastructures in high altitude mountainous regions. In April 2012 a gigantic ice plus rock avalanche destroyed military camp at Gyari and killed 139 persons. Antecedent, the objectives of this study are to simulate and model Gyari camp glacial avalanche with reference to its extent, height, momentum, velocity and pressure and, to simulate and model the other potential glacial avalanche prone areas in Shyok basin. To simulate the Gyari camp glacial hazard and other potential glacial avalanche hazards, an empirical process based Glacier Avalanche Model; Rapid Access Mass Movement Simulation (RAMMS) is used. The RAMMS model encompasses the variables like avalanche release height and release area for the conduct of simulation. The model output of Gyari glacial avalanche hazard resulted from a max pressure of 2500 KPa, max velocity of 90 m/s, and the max flow height of 40 m, while the resulted output debris volume calculated was 4.3145 million m3. The calibrated agreement was found in extent and height of actual debris in comparison with RAMMS simulated output. The potential hazardous glacial avalanche prone areas of Shyok basin were simulated by RAMMS model after the model being calibrated to the actual incident of Gyari. The study has resulted in identifying the Siachen glacier conflict zone being more prone to avalanche hazards because of host factors in general and the anthropogenic factor in particular.


Author(s):  
N. Gilany ◽  
◽  
J. Iqbal ◽  
E. Hussain

Glacial avalanche hazard poses threat to human lives and damage settlements / infrastructures in alpine glaciers mountainous regions. A gigantic ice plus rock avalanche destroyed Gyari military camp in Siachen sector on April 2012 and buried 139 personals. The study focuses on geospatial analysis and simulation of Shishper glacial avalanche of Hunza basin. To simulate the potential glacial avalanche hazard to Hassan Abad settlements, an empirical process based Glacier Avalanche Model; Rapid Access Mass Movement Simulation (RAMMS) is utilized. The model encompasses avalanche release area and height for the execution of simulation. The model output of Shishper glacial avalanche resulted; a max pressure of 450 Kpa, max velocity of 40 m/s, and the max flow height of 80m, while the resulted surge extent output was 2500m. The potential hazardous Shishper glacial avalanche remains a continuous hazard to Hassan Abad of Hunza valley including Karakoram Highway and Frontier Works Organization (FWO) camp. The study has resulted in identifying the Upper Indus Bain (UIB) being more prone to glacial avalanche hazards because of host factors in general and the anthropogenic factor in particular.


2021 ◽  
Author(s):  
Janusz Wasowski ◽  
Maurice McSaveney ◽  
Luca Pisanu ◽  
Vincenzo Del Gaudio ◽  
Yan Li ◽  
...  

<p>Large earthquake-triggered landslides, in particular rock avalanches, can have catastrophic consequences. However, the recognition of slopes prone to such failures remains difficult, because slope-specific seismic response depends on many factors including local topography, landforms, structure and internal geology. We address these issues by exploring the case of a rock avalanche of >3 million m<sup>3</sup> triggered by the 2008 Mw7.9 Wenchuan earthquake in the Longmen Shan range, China. The failure, denominated Yangjia gully rock avalanche, occurred in Beichuan County (Sichuan Province), one of the areas that suffered the highest shaking intensity and death toll caused by co-seismic landsliding. Even though the Wenchuan earthquake produced tens of large (volume >1 million m<sup>3</sup>) rock avalanches, few studies so far have examined the pre-2008 history of the failed slope or reported on the stratigraphic record of mass-movement deposits exposed along local river courses. The presented case of the Yangjia gully rock avalanche shows the importance of such attempts as they provide information on the recurrence of large slope failures and their associated hazards. Our effort stems from recognition, on 2005 satellite imagery, of topography and morphology indicative of a large, apparently pre-historic slope failure and the associated breached landslide dam, both features closely resembling the forms generated in the catastrophic 2008 earthquake. The follow-up reconstruction recognizes an earlier landslide deposit exhumed from beneath the 2008 Yangjia gully rock avalanche by fluvial erosion since May 2008. We infer a seismic trigger also for the pre-2008 rock avalanche based on the following circumstantial evidence: i) the same source area (valley-facing, terminal portion of a flat-topped, elongated mountain ridge) located within one and a half kilometer of the seismically active Beichuan fault; ii) significant directional amplification of ground vibration, sub-parallel to the failed slope direction, detected via ambient noise measurements on the ridge adjacent to the source area of the 2008 rock avalanche and iii) common depositional and textural features of the two landslide deposits. Then, we show how, through consideration of the broader geomorphic and seismo-tectonic contexts, one can gain insight into the spatial and temporal recurrence of catastrophic slope failures  in Beichuan County and elsewhere in the Longmen Shan. This insight, combined with local-scale geologic and geomorphologic knowledge, may guide selection of suspect slopes for reconnaissance, wide-area ambient noise investigation aimed at discriminating their relative susceptibility to co-seismic catastrophic failures. We indicate the feasibility of such investigations through the example of this study, which uses 3-component velocimeters designed to register low amplitude ground vibration.</p>


2017 ◽  
Vol 21 (2) ◽  
pp. 135 ◽  
Author(s):  
Rodrigo Valdés-Pineda ◽  
Juan B. Valdés ◽  
Pablo García-Chevesich

<p class="Resumen">Los eventos extremos de precipitación intensa que se produjeron entre el 24 y 26 de marzo de 2015 en la región del Desierto de Atacama (26-29°S), en el Norte de Chile, dejaron alrededor de 30 000 damnificados, siendo uno de los eventos de mayores magnitudes de los últimos 50 años, y que tuvo un costo de reconstrucción de alrededor de $1.5 billones de dólares. Los flujos de detritos que se incrementaron durante la crecida inundaron gran parte de las ciudades de Copiapó y Tierra Amarilla. Este manuscrito tiene por objetivo modelar la crecida aluvional de marzo de 2015 en la cuenca del Río Copiapó, específicamente en las localidades de Copiapó y Tierra Amarilla. La modelación se lleva a cabo utilizando el modelo Rapid Mass Movement Simulation (RAMMS) que permite modelar la dinámica de la crecida aluvional en dos dimensiones, utilizando las características topográficas de los dominios de modelación. La calibración del modelo fue llevada a cabo satisfactoriamente utilizando datos de alturas capturados en terreno después de la crecida del año 2015. Un análisis detallado del evento hidrometeorológico es llevado a cabo utilizando imágenes satelitales obtenidas desde Multi-satellite Precipitation Analysis (TMPA), así como datos pluviométricos e hidrográficos disponibles en la cuenca del Río Copiapó. La simulación de la crecida es reproducida con mapas de alturas de inundación asociados a dos escenarios de modelación. Las alturas máximas de inundación son finalmente utilizadas para el desarrollo de mapas de riesgos en ambas localidades. De acuerdo a nuestros resultados, el modelo RAMMS es una herramienta apropiada para modelar crecidas aluvionales y elaborar mapas de riesgos de inundación para mejorar la gestión de riesgos hidrológicos en cuencas áridas y semiáridas de Chile.</p>


1979 ◽  
Vol 16 (7) ◽  
pp. 1341-1361 ◽  
Author(s):  
Nicholas Eyles

Supraglacial debris transported by temperate valley glaciers is classified as supraglacial morainic till, distinct from lodgement till, and melt-out and flow till species on polar glaciers. In Iceland and the Alps, where annual discharges of supraglacial morainic till vary from 200–2000 m3 (compared with a maximum discharge of 26 000 m3 of lodgement till), till is deposited as three facies.Fades 1 occurs where supraglacial morainic till slows the rate of ice melt such that till is slowly superimposed on the subglacial surface in the form of stagnation or disintegration topography. The rate of deposition shows an initial slowing phase in response to (1) soil formation and (2) melt-out of englacial debris, followed by accelerated deposition accompanying the formation of thaw lakes. Continued mass movement of till on lake margins (backwasting) is more effective in destroying the ice-core than either top or bottom melt and prohibits accumulation of a distinct melt-out sediment. This situation can be contrasted with the style of sedimentation at polar glaciers. Where the depositing glacier is inactive and uncontrolled an unlineated till surface, typical of stagnation or disintegration topography, develops. Significantly, in terms of Pleistocene reconstructions, tracts of stagnation topography are being constructed at the margins of certain active Icelandic glaciers by sequential stagnation of a marginal rim of ice as the active glacier retreats up-valley.Fades 2 occurs where the till cover is too thin or too coarse and ice melt is unretarded and supraglacial morainic till is deposited as a dispersed bouldery veneer by dumping during which gravity sorting occurs. Dump moraine ridges frequently show internal bedding being ice-contact screes at time of formation but are not ice-cored. An active glacier produces a controlled distribution of landforms resulting in a lineated till surface.Facies 3 refers to those stratigraphic sequences where irregular or lensate till horizons alternate repeatedly with ice-contact outwash. The stratigraphic sequence as a whole is defined here as a supraglacial morainic till complex. Well-sorted, clast-supported outwash sediments occur within complexes deposited at inactive low-angled ice margins. At active steep-fronted glaciers, where areas of the till-covered ice front are only episodically scoured, distinct flood-deposited matrix-supported outwash units are found. Their subaerial formation runs counter to recent published interpretation of sediments in certain Pleistocene eskers.


2009 ◽  
Vol 137 (10) ◽  
pp. 3437-3455 ◽  
Author(s):  
Thomas Spengler ◽  
Jan H. Schween ◽  
Markus Ablinger ◽  
Günther Zängl ◽  
Joseph Egger

Abstract The summertime thermal circulation in the region of an asymmetric valley exit is investigated by means of observations and high-resolution model simulations. The northeastward-oriented Alpine Lech Valley opening into the Bavarian Alpine foreland has an eastern slope exceeding the western slope by about 15 km. Northerly winds along the eastern slope are frequently observed, reaching substantial strength during fair weather conditions. A field experiment has been conducted to explore this phenomenon and to pinpoint the connection of the northeasterly flow to the Lech Valley wind circulation. Numerical simulations have also been carried out to support the interpretation of the observations. It is found that the northerlies owe their existence to the dominantly easterly flow along the foothills of the Alps, which is partly induced by the Alpine heat low but may be strengthened by favorable synoptic conditions. Examples for both situations will be discussed. The diurnal flow in the Lech Valley has little obvious impact on these northeasterlies. On days with moderate synoptic easterly flow, a wake is present on the lee of the eastern slope of the exit region, accompanied by a shear zone along the edge of the wake. This shear zone is forced southward during the daytime because of thermally initiated pressure gradients between the Alpine foreland and the Alps, leading to sudden wind changes in the exit area at the time of its passage.


2021 ◽  
Author(s):  
Gisela Domej ◽  
Paolo Frattini ◽  
Elena Valbuzzi ◽  
Giovanni B. Crosta

&lt;p&gt;Earthquakes are &amp;#8211; amongst many others &amp;#8211; one type of triggering factors for mass movements in mountainous regions such as landslides, deep-seated gravitational slides (DSGSD), rockfalls, mudflows, etc. Hence, the emerging hazard would require an area-wide assessment of seismogenic impact to better apprehend the interplay of different triggering factors contributing to mass movement activity. However, seismicity itself is difficult to assess for several reasons. On the one hand, there are various parameters describing ground motion, and not all of them are suitable for area-wide assessments due to their availability or complexity. On the other hand, phenomena such as attenuation and topographic amplification must be taken into account, especially when the region of interest is an orogen.&lt;/p&gt;&lt;p&gt;Considering the criteria mentioned above and aiming for a mapping approach ascribing one value of seismogenic impact to one geographic location, we developed a strategy based on two empirical laws approximating Arias Intensity: the first law estimates Arias Intensities for a particular location as a function of earthquake magnitudes and focal depths; the second law corrects these estimated Arias Intensities in relation to the height differences to the nearest channel beds. Finally, we sum all corrected Arias Intensities resulting from different earthquakes in one particular location. Values obtained in this last step do not represent a physical entity; nevertheless, they allow for quantitative assessment of seismic exposure with respect to a given earthquake dataset covering a specific time frame, also allowing for color coding and comparative mapping approaches in GIS for other factors triggering mass movements.&lt;/p&gt;&lt;p&gt;In our case study, we assess the seismic exposure of a set of several hundreds of landslides, DSGSD, and rockfalls located in a rectangular area in the Italian Central Alps. In a first step, the area was discretized using a quadratic grid with increments of 1 km in order to assign points of evaluation to the previously mapped polygons representing landslides, DSGSD, and rockfalls. Additionally, to each polygon, a centroid point was attributed to avoiding the loss of polygons smaller than 1x1 km. In a second step, we computed the seismic exposure in each point resulting from two earthquake datasets covering the Alps, including a 500 km wide buffer zone: instrumental earthquake data of the ISC Bulletin covering a period from 1900 to 2019; macro-seismic earthquake data of the SHARE European Earthquake Catalog covering a period from 1000 to 2006.&lt;/p&gt;&lt;p&gt;The study serves as a preliminary test for assessing wider areas across the Alps, which either geologically or geographically belong together. We illustrate our mapping approach in a series of maps discussing the effects of the number of earthquakes, magnitudes, distances, topography, and time frame.&lt;/p&gt;


2020 ◽  
Author(s):  
Hans-Jürgen Götze ◽  

&lt;p&gt;The AlpArray gravity research group (AAGRG) focuses on compiling a homogeneous surface-based gravity dataset across the Alpine area, on creating digital data sets for Bouguer-, Free Air- and isostatic anomalies. In 2016/17 all ten countries around the Alps have agreed to contribute with point/gridded gravity data and/or gravity data processing techniques to recompilation of the Alpine gravity in an area from 2&amp;#176; East to 23&amp;#176; East and 50&amp;#176; North to 42&amp;#176; North. For this recompilation, the group was able to rely on existing national data. For the Ivrea zone in the western Alps, newly surveyed data were also integrated into the database.&lt;/p&gt;&lt;p&gt;The AAGRG decided to present the data set of the recalculated gravity fields on a 2 km x 2 km and 4 km x 4 km grid for the public. The final products will also include the calculated values for mass corrections of the measured gravity at each grid point. This allows users to use later customized densities for their own calculations of mass corrections between the physical surface and the ellipsoidal reference. The densities used are 2 670 kg/m&lt;sup&gt;3&lt;/sup&gt; for landmasses, 1 030 kg/m&lt;sup&gt;3&lt;/sup&gt; for water masses above and&amp;#160; -1 640 kg/m&lt;sup&gt;3&lt;/sup&gt; below the ellipsoid. The correction radius was set to the Hayford zone O2 (167 km). In the future, the calculation of long-distance effects of topography/bathymetry and its compensating masses (roots) are planned. The new Bouguer anomaly will be station completed (CBA) and compiled according to the most modern criteria and reference frames (both location and gravity). The concept of ellipsoidal heights implicitly includes the geophysical indirect effect. Atmospheric corrections are also considered. Special emphasis was put on the numerous lakes in the study area. They partly have a considerable effect on the gravity of stations that lie at their edges (for example, the rather deep reservoirs in the Alps). In the Ligurian and the Adriatic seas, ship data of the Bureau Gravim&amp;#233;trique International were used. Although not unproblematic, these data got the preference over satellite data.&lt;/p&gt;&lt;p&gt;&amp;#160;It is the aim of the work of the AAGRG to release a gravity database that can be used for high-resolution modeling, interdisciplinary studies from local to regional to continental scales, as well as for joint inversion with other datasets.&lt;/p&gt;


2021 ◽  
Vol 9 ◽  
Author(s):  
Jure Atanackov ◽  
Petra Jamšek Rupnik ◽  
Jernej Jež ◽  
Bogomir Celarc ◽  
Matevž Novak ◽  
...  

We present the compilation of a new database of active faults in Slovenia, aiming at introducing geological data for the first time as input for a new national seismic hazard model. The area at the junction of the Alps, the Dinarides, and the Pannonian Basin is moderately seismically active. About a dozen Mw &gt; 5.5 earthquakes have occurred across the national territory in the last millennium, four of which in the instrumental era. The relative paucity of major earthquakes and low to moderate fault slip rates necessitate the use of geologic input for a more representative assessment of seismic hazard. Active fault identification is complicated by complex regional structural setting due to overprinting of different tectonic phases. Additionally, overall high rates of erosion, denudation and slope mass movement processes with rates up to several orders of magnitude larger than fault slip rates obscure the surface definition of faults and traces of activity, making fault parametrization difficult. The presented database includes active, probably active and potentially active faults with trace lengths &gt;5 km, systematically compiled and cataloged from a vast and highly heterogeneous dataset. Input data was mined from published papers, reports, studies, maps, unpublished reports and data from the Geological Survey of Slovenia archives and dedicated studies. All faults in the database are fully parametrized with spatial, geometric, kinematic and activity data with parameter descriptors including data origin and data quality for full traceability of input data. The input dataset was compiled through an extended questionnaire and a set of criteria into a homogenous database. The final database includes 96 faults with 240 segments and is optimized for maximum compatibility with other current maps of active faults at national and EU levels. It is by far the most detailed and advanced map of active faults in Slovenia.


Sign in / Sign up

Export Citation Format

Share Document