scholarly journals 3D visualization tools to explore ancient architectures in South America

2016 ◽  
Vol 7 (15) ◽  
pp. 44 ◽  
Author(s):  
Roberto Pierdicca ◽  
Eva Savina Malinverni ◽  
Emanuele Frontoni ◽  
Francesca Colosi ◽  
Roberto Orazi

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p>Chan Chan is a wide archaeological site located in Peru. Its knowledge is limited to the visit of Palacio Tschudi, the only restored up to now, whilst the majority of the site remains unknown to the visitors. The reasons are manifold. The site is very large and difficult to visit. Some well-conserved architectures, such as Huaca Arco Iris, are very far from the core centre. Furthermore, there are heavy factors of decay, mainly caused by illegal excavations, by marine salt and by the devastating phenomenon of El Niño. For these reasons, the majority of the decorative elements are protected by new mud brick walls. Finally, the vastness of the buildings makes difficult to understand their real value, even through a direct visit of the site. In order to overcome the aforesaid problems, we designed, developed and realized the museum exhibition presented in this paper. We named Esquina Multimedia an installation where every corner is aimed to solve a specific problem, providing the tourists with interactive and enjoyable applications.  The virtual tour allows reaching also the unreachable areas. An Augmented Reality (AR) application has been developed in order to show ancient artefacts covered by the earth.  A web-browser has been specifically designed to show bas-reliefs, with HD visualization, anaglyph stereoscopic view and a 3D virtual model of both the structures and the bas-reliefs. At the same time, a wall-mounted panel representing a metric 3D reconstruction of the building helps the user to find the artefact position.  Descriptions of the hardware components and of the software details are presented, with particular focus regarding the implementation of the application, arguing how the digital approach could represent the only answer towards a full exploitation of archaeological sites. The paper also deals with the implementation of a web tool, specifically designed to display and browse 3D-Models.</p></div></div></div></div></div></div>

Author(s):  
S. S. S. Ramlee ◽  
N. Abd Razak ◽  
U. Ujang ◽  
S. Mohd Salleh ◽  
S. Azri ◽  
...  

Abstract. The smart city concept may aid in improving the city management, enhance the efficiency and thus increase the effectiveness of the city, where it is mainly focused on both information and technologies. This concept appears to be applicable for a smaller area such as university campus. Based on this idea, this research tries to implement the 3D smart campus for Universiti Teknologi Malaysia (UTM). This is an initial research towards a real implementation of 3D smart campus and conceivably 3D smart cities. This research focuses on the development of UTM smart campus by using 3D city modelling. The QGIS software was used to develop the 3D models. Then, the 3D model is viewed in a web browser for better 3D visualization and navigation. Furthermore, the results show that the 3D developed models for UTM smart campus can be a reliable platform to manage the spatial query and viewing the attributes of UTM campus buildings and facilities. This can be seen beneficial to the physical future development of the UTM campus area.


Author(s):  
A.-M. Boutsi ◽  
C. Ioannidis ◽  
S. Soile

<p><strong>Abstract.</strong> In the last decade 3D datasets of the Cultural Heritage field have become extremely rich and high detailed due to the evolution of the technologies they derive from. However, their online deployment, both for scientific and general public purposes is usually deficient in user interaction and multimedia integration. A single solution that efficiently addresses these issues is presented in this paper. The developed framework provides an interactive and lightweight visualization of high-resolution 3D models in a web browser. It is based on 3D Heritage Online Presenter (3DHOP) and Three.js library, implemented on top of WebGL API. 3DHOP capabilities are fully exploited and enhanced with new, high level functionalities. The approach is especially suited to complex geometry and it is adapted to archaeological and architectural environments. Thus, the multi-dimensional documentation of the archaeological site of Meteora, in central Greece is chosen as the case study. Various navigation paradigms are implemented and the data structure is enriched with the incorporation of multiple 3D model viewers. Furthermore, a metadata repository, comprises ortho-images, photographic documentation, video and text, is accessed straight forward through the inspection of the main 3D scene of Meteora by a system of interconnections.</p>


Author(s):  
M. Lo Brutto ◽  
R. Sciortino ◽  
A. Garraffa

Digital documentation and 3D modelling of archaeological sites are important for understanding, definition and recognition of the values of the sites and of the archaeological finds. The most part of archaeological sites are outdoor location, but a cover to preserve the ruins protects often parts of the sites. The possibility to acquire data with different techniques and merge them by using a single reference system allows creating multi-parties models in which 3D representations of the individual objects can be inserted. <br><br> The paper presents the results of a recent study carried out by Geomatics Laboratory of University of Palermo for the digital documentation and 3D modelling of Eraclea Minoa archaeological site. This site is located near Agrigento, in the south of Sicily (Italy) and is one of the most famous ancient Greek colonies of Sicily. The paper presents the results of the integration of different data source to survey the Eraclea Minoa archaeological site. The application of two highly versatile recording systems, the TLS (Terrestrial Laser Scanning) and the RPAS (Remotely Piloted Aircraft System), allowed the Eraclea Minoa site to be documented in high resolution and with high accuracy. The integration of the two techniques has demonstrated the possibility to obtain high quality and accurate 3D models in archaeological survey.


2021 ◽  
Author(s):  
Paula C Sanematsu

The development of physics-based 3D models that investigate the behavior of biological tissues requires effective and efficient visualization tools. The open-source software ParaView has such capabilities, but often impose a steep learning curve due to the use of the Visualization Toolkit (VTK) data structures. To overcome this, I show how to setup the components of 3D vertex-like models, i.e., vertices, faces, and polyhedra, into the VTK data format and then output as ParaView unstructured grid files. I present a few relevant tools to visualize and analyze the files in ParaView. All sample codes are available in the Github repository vis3Dvertex.


2019 ◽  
Author(s):  
Sawyer Reid stippa ◽  
George Petropoulos ◽  
Leonidas Toulios ◽  
Prashant K. Srivastava

Archaeological site mapping is important for both understanding the history as well as protecting them from excavation during the developmental activities. As archaeological sites generally spread over a large area, use of high spatial resolution remote sensing imagery is becoming increasingly applicable in the world. The main objective of this study was to map the land cover of the Itanos area of Crete and of its changes, with specific focus on the detection of the landscape’s archaeological features. Six satellite images were acquired from the Pleiades and WorldView-2 satellites over a period of 3 years. In addition, digital photography of two known archaeological sites was used for validation. An Object Based Image Analysis (OBIA) classification was subsequently developed using the five acquired satellite images. Two rule-sets were created, one using the standard four bands which both satellites have and another for the two WorldView-2 images their four extra bands included. Validation of the thematic maps produced from the classification scenarios confirmed a difference in accuracy amongst the five images. Comparing the results of a 4-band rule-set versus the 8-band showed a slight increase in classification accuracy using extra bands. The resultant classifications showed a good level of accuracy exceeding 70%. Yet, separating the archaeological sites from the open spaces with little or no vegetation proved challenging. This was mainly due to the high spectral similarity between rocks and the archaeological ruins. The satellite data spatial resolution allowed for the accuracy in defining larger archaeological sites, but still was a difficulty in distinguishing smaller areas of interest. The digital photography data provided a very good 3D representation for the archaeological sites, assisting as well in validating the satellite-derived classification maps. All in all, our study provided further evidence that use of high resolution imagery may allow for archaeological sites to be located, but only where they are of a suitable size archaeological features.


Author(s):  
Manjil Hazarika

This chapter elaborates the data and results of the explorations conducted in the Garbhanga Reserve Forest. The area has been intensively surveyed for the location of potential archaeological sites and the collection of ethnographic data in order to draw direct historical analogies. An ‘area-approach’ study has been conducted in order to formulate a general model for archaeological site structure, locations, geomorphic situations, and site formation processes that can be used for archaeological study in the hilly landscape of Northeast India. Present-day agricultural implements have been analysed and compared with Neolithic implements in order to reconstruct ancient farming culture by way of undertaking systematic study of modern peasant ways of life in the study area. The ideological significance of stone artefacts as ‘thunderstone’ in Northeast India and among the Karbis has also been discussed.


2021 ◽  
Vol 13 (14) ◽  
pp. 2719
Author(s):  
Nicodemo Abate ◽  
Alessia Frisetti ◽  
Federico Marazzi ◽  
Nicola Masini ◽  
Rosa Lasaponara

Unmanned aerial vehicles are currently the most used solution for cultural heritage in the field of close range and low altitude acquisitions. This work shows data acquired by multitemporal and multispectral aerial surveys in the archaeological site of San Vincenzo al Volturno (Molise, Italy). The site is one of the most important medieval archaeological sites in the world. It is a monastic settlement that was particularly rich during the early Middle Ages, and is famous for its two full-frescoed crypts which represent a milestone in the history of medieval art. Thanks to the use of multispectral aerial photography at different times of the year, an area not accessible to archaeological excavation has been investigated. To avoid redundancy of information and reduce the number of data to be analysed, a method based on spectral and radiometric enhancement techniques combined with a selective principal component analysis was used for the identification of useful information. The combination of already published archaeological data and new remote sensing discoveries, has allowed to better define the situation of the abbey during the building phases of the 8th/9th century and 11th century, confirming and adding new data to the assumptions made by archaeologists.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2000 ◽  
Vol 6 (S2) ◽  
pp. 282-283
Author(s):  
Matthew Dougherty ◽  
Wah Chiu

Sophisticated tools are needed to examine the results of cyro-microscopy. As the size and resolution of three dimensional macromolecular structures steadily improve, and the speed at with which they can be generated increases, researchers are finding they are inundated with larger datasets and at the same time are compelled to expediently evaluate these structures in unforeseen ways. Integration of EM data with other types of information is becoming necessary and routine; for example X-ray data, 3D EM reconstructions, and theoretical models, must be evaluated in concert to discount or propose hypothesis. To create such tools, the developer must take into account not only the empirical and theoretical possibilities, but also they must master the human factors and computational limits. During the last five years, the National Center for Macromolecular Imaging (NCMI) has progressed from a remedial 3D visualization capability to a collection of visualization tools allowing researchers to focus on the discovery phase of biological research.


Sign in / Sign up

Export Citation Format

Share Document