Design and optimization of a batch sequential contactor for the removal of chromium(VI) from industrial wastewater using sheep wool as a low-cost adsorbent

2018 ◽  
Vol 113 ◽  
pp. 109-113 ◽  
Author(s):  
Priyasha Ray ◽  
Muhammad A. Sabri ◽  
Taleb H. Ibrahim ◽  
Mustafa I. Khamis ◽  
Fawwaz H. Jumean
Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 556
Author(s):  
Mustafa I. Khamis ◽  
Taleb H. Ibrahim ◽  
Fawwaz H. Jumean ◽  
Ziad A. Sara ◽  
Baraa A. Atallah

Alizarin red S (ARS) removal from wastewater using sheep wool as adsorbent was investigated. The influence of contact time, pH, adsorbent dosage, initial ARS concentration and temperature was studied. Optimum values were: pH = 2.0, contact time = 90 min, adsorbent dosage = 8.0 g/L. Removal of ARS under these conditions was 93.2%. Adsorption data at 25.0 °C and 90 min contact time were fitted to the Freundlich and Langmuir isotherms. R2 values were 0.9943 and 0.9662, respectively. Raising the temperature to 50.0 °C had no effect on ARS removal. Free wool and wool loaded with ARS were characterized by Fourier Transform Infrared Spectroscopy (FTIR). ARS loaded wool was used as adsorbent for removal of Cr(VI) from industrial wastewater. ARS adsorbed on wool underwent oxidation, accompanied by a simultaneous reduction of Cr(VI) to Cr(III). The results hold promise for wool as adsorbent of organic pollutants from wastewater, in addition to substantial self-regeneration through reduction of toxic Cr(VI) to Cr(III). Sequential batch reactor studies involving three cycles showed no significant decline in removal efficiencies of both chromium and ARS.


2017 ◽  
Vol 88 ◽  
pp. 169-178 ◽  
Author(s):  
M.W. Rahman ◽  
M.Y. Ali ◽  
I. Saha ◽  
M. Al Raihan ◽  
M. Moniruzzaman ◽  
...  

Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 551-584
Author(s):  
Samir Mustapha ◽  
Ye Lu ◽  
Ching-Tai Ng ◽  
Pawel Malinowski

The development of structural health monitoring (SHM) systems and their integration in actual structures has become a necessity as it can provide a robust and low-cost solution for monitoring the structural integrity of and the ability to predict the remaining life of structures. In this review, we aim at focusing on one of the important issues of SHM, the design, and implementation of sensor networks. Location and number of sensors, in any SHM system, are of high importance as they impact the system integration, system performance, and accuracy of assessment, as well as the total cost. Hence we are interested in shedding the light on the sensor networks as an essential component of SHM systems. The review discusses several important parameters including design and optimization of sensor networks, development of academic and commercial solutions, powering of sensors, data communication, data transmission, and analytics. Finally, we presented some successful case studies including the challenges and limitations associated with the sensor networks.


2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


2010 ◽  
Vol 7 (3) ◽  
pp. 1193-1201
Author(s):  
Baghdad Science Journal

In this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.


Sign in / Sign up

Export Citation Format

Share Document