Effect of Elemental Sulfur on Corrosion in Sour Gas Systems

CORROSION ◽  
1991 ◽  
Vol 47 (4) ◽  
pp. 285-308 ◽  
Author(s):  
G. Schmitt

Abstract The corrosive interaction of wet elemental sulfur with construction materials is reviewed, emphasizing effects of alloy composition (carbon steels, ferritic steels, austenitic steels, ferritic-austenitic [duplex] steels, Ni- and Co-base alloys, and titanium and its alloys), medium composition (salts, partial pressures of H2S and CO2, and acetic acid), and environmental conditions (temperature 20 to 250°C, stress). A summary of relevant physical and chemical properties of elemental sulfur is given to provide the fundamental basis for the understanding of sulfur corrosion. The different corrosion mechanisms found in the literature are critically discussed. Considering all data available, a mechanism is proposed explaining the electrochemical role of sulfur in the (physically) dissolved, solid, and liquid states. Methods for corrosion protection are outlined for carbon steels and corrosion-resistant alloys (CRA).

The rapid increase of plastics waste produced worldwide today poses a danger to human health because of the pollution caused by the unsafe disposal and non-biodegradability of this waste combined with toxic gas emissions during incineration. Globally, PET (polyethylene terephalate) is commonly used for bottling water and other plastic containers. Recycling the waste would be an additional benefit. This study focuses some researchers on the forms, methods of recycling and various literature applications of PET wastes. Recycled PET can of course be used when combined with the sand aggregate to manufacture of various construction materials, such as tiles, bricks, paving stones etc. This research focuses on its application as it attracts substantial building materials such as the manufacture of various PET waste tiles and their unique mechanical , physical and chemical properties; There are some important studies discussed in relation to PET waste, recycling methods , and results from the study. Even various applications are described here. Its usefulness is further defined as roofing Composite concrete, floor tiling and other applications


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3052 ◽  
Author(s):  
Mohajerani ◽  
Burnett ◽  
Smith ◽  
Kurmus ◽  
Milas ◽  
...  

Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction are immense, promising extraordinary physical and chemical properties for modified construction materials. Among the many different types of nanoparticles, titanium dioxide, carbon nanotubes, silica, copper, clay, and aluminium oxide are the most widely used nanoparticles in the construction sector. The promise of nanoparticles as observed in construction is reflected in other adoptive industries, driving the growth in demand and production quantity at an exorbitant rate. The objective of this study was to analyse the use of nanoparticles within the construction industry to exemplify the benefits of nanoparticle applications and to address the short-term and long-term effects of nanoparticles on the environment and human health within the microcosm of industry so that the findings may be generalised. The benefits of nanoparticle utilisation are demonstrated through specific applications in common materials, particularly in normal concrete, asphalt concrete, bricks, timber, and steel. In addition, the paper addresses the potential benefits and safety barriers for using nanomaterials, with consideration given to key areas of knowledge associated with exposure to nanoparticles that may have implications for health and environmental safety. The field of nanotechnology is considered rather young compared to established industries, thus limiting the time for research and risk analysis. Nevertheless, it is pertinent that research and regulation precede the widespread adoption of potentially harmful particles to mitigate undue risk.


2018 ◽  
Vol 284 ◽  
pp. 1268-1272
Author(s):  
S.G. Kuptsov ◽  
V.V. Shimov ◽  
R.S. Magomedova

The paper considers a technology for hardening construction materials using the hybrid (laser-spark) method by the example of steel St3 using hard alloys (VK8, stellite PR-V3K). A significant (several-fold) increase in the wear resistance of the coatings obtained is shown at resistance to abrasive friction due to the good quality of the coating layer and its microhardness (up to 60 GPa). Optimum modes for electrical spark and laser surface modification are proposed. Some physical and chemical properties of the coatings obtained (thickness, roughness, wear resistance, microhardness), as well as their dependence on the hybrid machining modes, are studied. The prospectivity of applying the hybrid (laser-spark) method for hardening of machine parts in order to increase their resistance to abrasive wear during friction is justified.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document