scholarly journals Dinámica de la vegetación andina del lago Argentino (50° S, 72° O) desde el retiro de los glaciares (ca. 12.000 años cal AP)

2020 ◽  
Vol 47 (3) ◽  
pp. 599
Author(s):  
Gonzalo D. Sottile ◽  
Marcos E. Echeverría ◽  
Marcela S. Tonello ◽  
María A. Marcos ◽  
Florencia P. Bamonte ◽  
...  

Paleoecological studies in Patagonia provide information about vegetation and climate changes occurred during the Holocene. The climatic evolution of this region offers a unique opportunity to study the environmental variability as well as the ecosystem variations. The dynamic of the forest ecosystems is modulated by the occurrence of disturbances. Fires are one of the most important disturbances in temperate forest ecosystems, and its study allows contrasting independently about the changes experienced by ecosystems. In addition, in Patagonia, environmental and postglacial vegetation changes have been determined by variations in the temperature and westerlies winds. In order to reconstruct changes experienced by the forest ecosystem and patterns of plant diversity during the Holocene, in relation to Postglacial dynamics, natural and anthropic disturbances in the Lake Argentino, pollen and charcoal were studied in a sedimentary sequence at Península Avellaneda. Pollen assemblages suggest non-cyclic changes in plant diversity during the Holocene. The highly diverse cold grass-shrub communities dominated the area up to the Early Holocene, when they were displaced upland by less diverse forest and steppes. Also, The Early and Midd-Holocene was characterized by opposite variations of hydric balance between Andean and extra-andean plant communities present between 48° and 50° S, whereas fire activity occurs synchronously between forest (Andean) and steppe communities (Extra-andean). Late Holocene is characterized by different proxy signals depending on the geographical location of the paleoecological records. To conclude, this work provides a better understanding of the fossil pollen record by its comparison with modern surface pollen samples along an altitudinal vegetation gradient.

2020 ◽  
Author(s):  
Jan Roleček ◽  
Vojtěch Abraham ◽  
Ondřej Vild ◽  
Helena Svitavská Svobodová ◽  
Eva Jamrichová ◽  
...  

AbstractAimsReconstruction of the Holocene diversity changes in a biogeographically complex region. Description of major diversity patterns, testing their predictors, and their interpretation in the palaeoecological and biogeographical context. Testing the assumption that pollen record is informative with respect to plant diversity in our study area.MethodsFossil pollen extracted from 18 high-quality profiles was used as a proxy of past plant diversity. Pollen counts of tree taxa were corrected by pollen productivity, and pollen assemblages were resampled to 100 grains per sample and 150 grains per 500-years time window. SiZer analysis was used to test and visualize multi-scale diversity patterns. Linear modelling was used to identify the best predictors. SiZer maps and pollen composition were analysed using non-metric multidimensional scaling. K-means clustering and indicator species analysis were used to interpret ordination results.ResultsMean Holocene plant diversity is significantly predicted by latitude, while its temporal pattern followed the biogeographical region and elevation. Major differences were found between the Mesic and Montane Hercynia (lower diversity, increasing only in the Late Holocene) and Pannonia, the Carpathians and Warm Hercynia (higher diversity, increasing from the Early or Middle Holocene on). Low diversity in the Middle and Late Holocene is associated with the prevalence of woody and acidophilic taxa. High diversity is associated with numerous grassland and minerotrophic wetland taxa, crops and weeds. Fossil-modern pollen diversity and modern pollen-plant diversity show significant positive relationships.ConclusionsPlant diversity and its changes during the Holocene are geographically structured across temperate Europe. Main causes appear to be differences in past dynamics of the landscape openness and vegetation composition, driven mainly by changes in climate and human impact and their different timing. Fossil pollen, if appropriately treated, is a useful proxy of past plant diversity.


2009 ◽  
Vol 5 (1) ◽  
pp. 73-84 ◽  
Author(s):  
S. Müller ◽  
P. E. Tarasov ◽  
A. A. Andreev ◽  
B. Diekmann

Abstract. In this study, a radiocarbon-dated pollen record from Lake Billyakh (65°17' N, 126°47' E; 340 m a.s.l.) in the Verkhoyansk Mountains was used to reconstruct vegetation and climate change since about 15 kyr BP. The pollen record and pollen-based biome reconstruction suggest that open cool steppe (STEP) and grass and sedge tundra (TUND) communities with Poaceae, Cyperaceae, Artemisia, Chenopodiaceae, Caryophyllaceae and Selaginella rupestris dominated the area from 15 to 13.5 kyr BP. On the other hand, the constant presence of Larix pollen in quantities comparable to today's values points to the constant presence of boreal deciduous conifer (CLDE) trees in the regional vegetation during the Late Glacial. A major spread of shrub tundra communities, including birch (Betula sect. Nanae), alder (Duschekia fruticosa) and willow (Salix) species, is dated to 13.5–12.7 kyr BP, indicating a noticeable increase in precipitation toward the end of the Last Glaciation, particularly during the Bølling-Allerød Interstadial. Between 12.7 and 11.4 kyr BP pollen percentages of herbaceous taxa rapidly increased, whereas shrub taxa percentages decreased, suggesting strengthening of the steppe communities associated with the relatively cold and dry Younger Dryas Stadial. However, the pollen data in hand indicate that Younger Dryas climate was less severe than the climate during the earlier interval from 15 to 13.5 kyr BP. The onset of the Holocene is marked in the pollen record by the highest values of shrub and lowest values of herbaceous taxa, suggesting a return of warmer and wetter conditions after 11.4 kyr BP. Percentages of tree taxa increase gradually and reach maximum values after 7 kyr BP, reflecting the spread of boreal cold deciduous and taiga forests in the region. An interval between 7 and 2 kyr BP is noticeable for the highest percentages of Scots pine (Pinus subgen. Diploxylon), spruce (Picea) and fir (Abies) pollen, indicating mid-Holocene spread of boreal forest communities in response to climate amelioration and degradation of the permafrost layer.


2008 ◽  
Vol 4 (6) ◽  
pp. 1237-1264 ◽  
Author(s):  
S. Müller ◽  
P. E. Tarasov ◽  
A. A. Andreev ◽  
B. Diekmann

Abstract. In this study a radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) in the Verkhoyansk Mountains was used to reconstruct vegetation and climate change since about 15 kyr BP (1 kyr=1000 cal. yr). The pollen record and pollen-based biome reconstruction suggest that open cool steppe and grass and sedge tundra communities with Poaceae, Cyperaceae, Artemisia, Chenopodiaceae, Caryophyllaceae and Selaginella rupestris dominated the area from 15 to 13.5 kyr BP. On the other hand, the constant presence of Larix pollen in quantities comparable to today's values points to the constant presence of boreal deciduous conifer trees in the regional vegetation during the last glaciation. A major spread of shrub tundra communities, including birch (Betula sect. Nanae), alder (Duschekia fruticosa) and willow (Salix) species, is dated to 13.5–12.7 kyr BP, indicating a noticeable increase in precipitation toward the end of the last glaciation, particularly during the Allerød Interstadial. Between 12.7 and 11.4 kyr BP pollen percentages of herbaceous taxa rapidly increased, whereas shrub taxa percentages decreased, suggesting strengthening of the steppe communities associated with the relatively cold and dry Younger Dryas Stadial. However, the pollen data in hand indicate that Younger Dryas climate was less severe than the climate during the earlier interval from 15 to 13.5 kyr BP. The onset of the Holocene is marked in the pollen record by the highest values of shrub and lowest values of herbaceous taxa, suggesting a return of warmer and wetter conditions after 11.4 kyr BP. Percentages of tree taxa increase gradually and reach maximum values after 7 kyr BP, reflecting the spread of boreal cold deciduous and taiga forests in the region. An interval between 7 and 2 kyr BP is noticeable for the highest percentages of Scots pine (Pinus subgen. Diploxylon), spruce (Picea) and fir (Abies) pollen, indicating mid-Holocene spread of boreal forest communities in response to climate amelioration and degradation of the permafrost layer.


1995 ◽  
Vol 43 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Eiliv Larsen ◽  
Hans Petter Sejrup ◽  
Sigfus J. Johnsen ◽  
Karen Luise Knudsen

AbstractThe climatic evolution during the Eemian and the Holocene in western Europe is compared with the sea-surface conditions in the Norwegian Sea and with the oxygen-isotope-derived paleotemperature signal in the GRIP and Renland ice cores from Greenland. The records show a warm phase (ca. 3000 yr long) early in the Eemian (substage 5e). This suggests that the Greenland ice sheet, in general, recorded the climate in the region during this time. Rapid fluctuations during late stage 6 and late substage 5e in the GRIP ice core apparently are not recorded in the climatic proxies from western Europe and the Norwegian Sea. This may be due to low resolution in the terrestrial and marine records and/or long response time of the biotic changes. The early Holocene climatic optimum recorded in the terrestrial and marine records in the Norwegian Sea-NW European region is not found in the Summit (GRIP and GISP2) ice cores. However, this warm phase is recorded in the Renland ice core. Due to the proximity of Renland to the Norwegian Sea, this area is probably more influenced by changes in polar front positions which may partly explain this discrepancy. A reduction in the elevation at Summit during the Holocene may, however, be just as important. The high-amplitude shifts during substage 5e in the GRIP core could be due to Atlantic water oscillating closer to, and also reaching, the coast of East Greenland. During the Holocene, Atlantic water was generally located farther east in the Norwegian Sea than during the Eemian.


The Holocene ◽  
2018 ◽  
Vol 28 (6) ◽  
pp. 1011-1022 ◽  
Author(s):  
Bing Song ◽  
Sangheon Yi ◽  
Wook-Hyun Nahm ◽  
Jin-Young Lee ◽  
Limi Mao ◽  
...  

To understand the early- to mid-Holocene vegetation and climate dynamics on the eastern coast of the Yellow Sea, we obtained a sedimentary core with high-resolution accelerator mass spectrometry (AMS) carbon 14 (14C) data from the Gunsan coast in South Korea. The palynological analysis demonstrated that the riverine wetland meadow from 12.1 to 9.8 cal. kyr BP changed to temperate deciduous broad-leaved forest in 9.8–2.8 cal. kyr BP. In addition, the cold climate from 12.1 to 9.8 cal. kyr BP became warmer from 8.5 to 7.3 cal. kyr BP. This was followed by another relatively cold period from 7.3 to 2.8 cal. kyr BP. The temperature change was mainly in response to solar factors. However, there are two relatively humid periods from 12.1 to 9.8 and 8.5 to 7.3 cal. kyr BP, which arose for different reasons. The earlier humid period resulted from strong westerlies and a rapidly rising sea level. The later humid period was produced mainly by the strong East Asian summer monsoon (EASM) and may also be linked to La Niña–like activity. The cold ‘Younger Dryas’ event from 12.0 to 11.4 cal. kyr BP recorded in this study may have been produced by a North Atlantic meltwater pulse. This would have reduced temperatures that were already low because of weak insolation, and the strong winter monsoons would have increased the precipitation.


2015 ◽  
Vol 32 (2) ◽  
pp. 91-97
Author(s):  
Eva Břízová ◽  
Małgorzata Roman

Abstract Results of geological and pollen investigations of the lake-bog sediments from the section Wietrzychowice W5, located nearby the Neolithic Funnel Beaker Culture (FBC) megaliths, are presented. The pollen data reveal that sedimentation at Wietrzychowice has begun at the beginning of the Holocene (Preboreal). Pollen analysis was used to determine stratigraphy with regard to sediment characteristics. The pollen spectrum was divided into 8 LPAZes (1-7Xa, 7Xb) which were also, where possible, stratigraphically classified. Radiocarbon dating of 6 730 ± 90 BP (5 730–5 480 BC, MKL-702) at depth of 1.20 m confirmed the pollen analysis age estimation. Five settlement episodes were found in organic sediments in the upper part of the W5 core. The first was presumably during the Preboreal, the second in the early Atlantic, the third in the late Atlantic (probably Neolithic FBC), the fourth in the early Middle Ages and the last one in the late Middle Ages. The pollen analysis was useful to point irregularities in sediment succession. Such a situation made palaeoenvironmental interpretation difficult, but further research is still needed to enable an accurate reconstruction.


2009 ◽  
Vol 5 (3) ◽  
pp. 503-521 ◽  
Author(s):  
N. Combourieu Nebout ◽  
O. Peyron ◽  
I. Dormoy ◽  
S. Desprat ◽  
C. Beaudouin ◽  
...  

Abstract. High-temporal resolution pollen record from the Alboran Sea ODP Site 976, pollen-based quantitative climate reconstruction and biomisation show that changes of Mediterranean vegetation have been clearly modulated by short and long term variability during the last 25 000 years. The reliability of the quantitative climate reconstruction from marine pollen spectra has been tested using 22 marine core-top samples from the Mediterranean. The ODP Site 976 pollen record and climatic reconstruction confirm that Mediterranean environments have a rapid response to the climatic fluctuations during the last Termination. The western Mediterranean vegetation response appears nearly synchronous with North Atlantic variability during the last deglaciation as well as during the Holocene. High-resolution analyses of the ODP Site 976 pollen record show a cooling trend during the Bölling/Allerød period. In addition, this period is marked by two warm episodes bracketing a cooling event that represent the Bölling-Older Dryas-Allerød succession. During the Holocene, recurrent declines of the forest cover over the Alboran Sea borderlands indicate climate events that correlate well with several events of increased Mediterranean dryness observed on the continent and with Mediterranean Sea cooling episodes detected by alkenone-based sea surface temperature reconstructions. These events clearly reflect the response of the Mediterranean vegetation to the North Atlantic Holocene cold events.


The Holocene ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 1468-1479 ◽  
Author(s):  
Jan Novák ◽  
Vojtěch Abraham ◽  
Petr Šída ◽  
Petr Pokorný

Stand-scale palaeoecology in sandstone landscapes provides insight into contrasting Holocene forest succession trajectories. Sharp geomorphological gradients in this investigated area, which in addition have never been deforested during the Holocene, provide a good model for upscaling the local vegetation histories to the wider territory of Central Europe. In three sandstone areas – Bohemian Paradise, Polemené hory and Broumov – we compare (1) anthracological records from archaeological stratigraphies under rockshelters with (2) pedoanthracological sequences from nearby locations in valleys, rocks and plateaus; and with (3) pollen analyses carried out in nearby peat accumulations. Taphonomical vectors discriminate the source vegetation of each proxy, however thanks to proximity of all sampling sites pollen record and charcoals from rockshelters integrate the signal from pedoanthracology. The results show that past distribution of individual arboreal taxa is clearly related to the position within local environmental gradients. All basic habitats – valleys, rocky edges and plateaus – started with the dominance of pine forest in the early Holocene. Middle Holocene witnessed expansion of spruce inside valleys and oak on plateaus. Pine has maintained its dominance on rocky edges. In the late Holocene, silver fir and beech expanded into valleys, while oak stands remained dominant on plateaus. In the High Medieval and Modern Ages, human impact triggered general spread of fir. Records indicate site-specific local histories connected to various human activities, fire dynamics and erosion. Against the background of these immediate driving forces, the long-term process of ecosystem changes has been influenced by climate of the Holocene.


Sign in / Sign up

Export Citation Format

Share Document